
ACCEPTED ARTICLE

This is an Accepted Manuscript of an article published by Taylor & Francis in
ENGINEERING OPTIMIZATION on 23 Aug 2022, available at:
https://www.tandfonline.com/doi/10.1080/0305215X.2022.2106477.

Simulated Annealing-based Hyper-heuristic for Flexible Job Shop

Scheduling

Kelvin Ching Wei Lima, Li-Pei Wonga and Jeng Feng Chinb

aSchool of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia;
bSchool of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang,
Malaysia

ABSTRACT
The flexible job shop scheduling problem (FJSP) is common in high mix industries
such as semiconductor manufacturing. An FJSP is initiated when an operation can
be executed on a machine assigned from a set of alternative machines. Thus, an
FJSP consists of the machine assignment and job sequencing sub-problems which
can be resolved using a pair of problem-dependent machine assignment rules (MAR)
and job sequencing rules (JSR). Selecting a MAR-JSR pair that performs efficiently
is a challenge. This study proposes a simulated annealing-based hyper-heuristic (SA-
HH) for assembling a heuristic scheme (HS) consisting of MAR-JSR pairs with a
set of problem state features. Two variants of SA-HH, i.e. SA-HH based on HS
with problem state features (SA-HHPSF) and without problem state features (SA-
HHNO-PSF), are investigated. In terms of the best makespan, SA-HHPSF outperforms
or comparable to over 75% of the benchmark algorithms on 8 out of 10 instances in
Brandimarte dataset.

KEYWORDS
manufacturing; production scheduling; machine scheduling; heuristic selection;
heuristic scheme

1. Introduction

The flexible job shop scheduling problem (FJSP) has been studied extensively by
researchers as an engineering optimisation problem in various industries, such as
semiconductor manufacturing (Mönch et al., 2011) and aero-engine blade manufac-
turing (Zhou, Yang and Zheng, 2019b). The FJSP is made up of a batch of jobs
J = {j1, j2, ..., jx} and a set of machines M = {m1,m2, ...,my}. Each job consists of a
pre-defined sequence of operations such that for the i-th job, the set of operations is
given as Oi = {oi,1, oi,2, ..., oi,z} and oi,l refers to the l-th operation of i-th job. With
the presence of parallel machines, each operation can be processed on exactly one ma-
chine selected from a set of parallel machines B(oi,l) ⊆ M, |M | ≥ 1. This raises two
sub-problems in FJSP: machine assignment and job sequencing (Brandimarte, 1993).

Solving a FJSP, which is a type of combinatorial optimisation problem, involves the
search of an optimal solution from a finite set of feasible solutions (Choong, Wong

CONTACT Li-Pei Wong. Email: LPWONG@USM.MY

and Lim, 2019). There are two types of search algorithms: exact and approximation
(Mohan, Lanka and Rao, 2019). Exact algorithms such as branch-and-bound (Soto
et al., 2020) and mixed integer linear programming (Zhang et al., 2021) are used to
solve FJSP to optimality. However, exact algorithms are only suitable for small-sized
FJSP instances because the run time increases with problem size (Sharma and Jain,
2016).

Approximation algorithms do not guarantee optimality especially for large and
complex FJSP instances. These algorithms can return sub-optimal solutions within
a short period of time. This is particularly useful when computational resources are
limited. Heuristic, metaheuristic and hyper-heuristic are examples of approximation
algorithms. Heuristic such as dispatching rule is a quick and straightforward optimisa-
tion technique. However, its performance depends heavily on problem characteristics
(Zhou and Yang, 2019). Metaheuristics such as artificial bee colony algorithm (Fer-
reira et al., 2020) and differential evolution (Cao, Shi and Chang, 2022) are search
algorithms which iteratively explore and exploit the solution space for a solution.
Nonetheless, parameter tuning for a metaheuristic can be time-consuming and limit
its reusability (Qu et al., 2015).

Hyper-heuristic is a high-level approach which explores a search space of heuristic
components or known low-level heuristics to solve computationally difficult problems
(Drake et al., 2020). Hyper-heuristic can be categorised into the generation hyper-
heuristic (i.e. heuristic to generate heuristic) and the selection hyper-heuristic (i.e.
heuristic to select heuristic) (Burke et al., 2010, 2013).

The generation hyper-heuristic derives new heuristics from a set of heuristic com-
ponents and are mostly developed on the basis of the genetic programming (GP)
framework (Sabar et al., 2013). However, GP-based hyper-heuristics tend to generate
sophisticated heuristics which eventually lead to flexibility and interpretability issues
(Nguyen, Zhang and Tan, 2017). Meanwhile, a wide range of heuristics defined by
domain experts are publicly available and can be implemented by using a simpler
representation. With concerns that these pre-defined heuristics are problem depen-
dent and less applicable in complex scheduling environments (Zhou, Yang and Zheng,
2019a), studies on selection hyper-heuristic are gaining attention.

The selection hyper-heuristic operates on a heuristic search space where a suitable
heuristic is selected to solve a problem. Applying a fixed heuristic throughout could
be disadvantageous, as the performance of heuristic are problem-dependent. Hence,
instead of one, multiple heuristics could be selected (Garza-Santisteban et al., 2019a).
The idea is to exploit the strengths of each heuristic by applying the heuristic consec-
utively whenever a scheduling decision is needed (Kheiri and Keedwell, 2015; Kheiri
et al., 2016). Such approach is deemed less feasible on problem-dependent heuris-
tics (e.g. dispatching rules). Another approach proposed by Garza-Santisteban et al.
(2019a) includes the use of problem state features to facilitate the application of multi-
ple heuristics, namely a heuristic scheme (HS). In this approach, the choice of heuristic
is determined by a mathematical model based on a comparison between the current
problem state and the pre-defined problem state in the HS. The choice of heuristic that
corresponds to a particular problem state makes it more efficient in solving a problem.
While Garza-Santisteban et al. (2019a) has experimented the HS formulation on the
JSP, this research applies the design of the HS with adaptations on the formulation of
problem state features so that it becomes applicable on the FJSP.

This study is attempted on a static FJSP environment where all job-related in-
formation is known in advance with all machines kept idle at the initial state. The
following constraints are considered: (1) each machine can only execute one opera-

2

tion at a time without pre-emption, and (2) the execution of each job is subjected to
the precedence constraint. This study considers makespan (Cmax), which refers to the
completion time of the final completed job, as the sole optimisation objective.

To determine a good-performing HS for FJSP, a Simulated Annealing-based Hyper-
heuristic (SA-HH) is proposed. The simulated annealing (SA) algorithm was first pro-
posed by Kirkpatrick, Gelatt and Vecchi (1983). It emulates the slow cooling process
of metals as the search process in discovering the global optimum of the objective
function. By embedding the SA into the hyper-heuristic framework, the SA-HH is
formed. The motivation of proposing the SA-HH to solve the FJSP is twofold. Firstly,
the SA-HH is a single-point selection hyper-heuristic which maintains a single candi-
date solution from the heuristic search space. This solution eventually simplifies the
initialisation process and allows easier control on the search process. Secondly, instead
of ‘accept all moves’ and ‘improvements only’, the SA-HH uses an acceptance strategy
which probabilistically accepts a poor move to allow the algorithm to escape from the
local optimum.

The remainder of the article is organised as follows. Section 2 reviews the related
work. Section 3 introduces and describes the proposed algorithm. Section 4 discusses
the experimental results. Section 5 summarises the research findings and concludes
the article.

2. Related Work

This section reviews different types of hyper-heuristics in tackling various combina-
torial optimisation problems. Both generation and selection hyper-heuristics can be
further categorised based on the nature of low-level heuristic, i.e. perturbative hyper-
heuristic or constructive hyper-heuristic (Burke et al., 2013). Perturbative hyper-
heuristic iteratively modifies an existing solution, whereas constructive hyper-heuristic
iteratively builds a solution from scratch (Choong, Wong and Lim, 2018). Hence, there
are four categories of hyper-heuristics, i.e. perturbative generation, constructive gen-
eration, perturbative selection and constructive selection.

Perturbative selection hyper-heuristic has been proposed to solve FJSP where the
candidate solution of the heuristic search space is represented by using a sequence of
heuristics. In the sequence, each perturbative heuristic is executed based on a pre-
defined order to perturbate the FJSP schedule. Luo, Lin and Xu (2020) used a generic
selection hyper-heuristic to manipulate perturbative heuristics into a sequence for
the FJSP. At the same time, differential evolution-based hyper-heuristic (Lin et al.,
2017) and backtracking search-based hyper-heuristic (Lin, 2019) have been proposed
to create new sequences of perturbative heuristics for the FJSP with fuzzy processing
time.

Perturbative selection hyper-heuristic has also been proven effective in other domain
problems. Bonab et al. (2019) proposed the swarm-based simulated annealing-based
hyper-heuristic to sequence perturbative heuristics for clustering. Kheiri and Keedwell
(2015) developed a hidden Markov model-based hyper-heuristic to solve the travelling
salesman and vehicle routing problems. The authors claimed that the proposed hyper-
heuristic outperforms the current model with minimum parameter tuning. A similar
hyper-heuristic by Ahmed, Mumford and Kheiri (2019) was applied to solve the urban
transit route design problem with better results in less time.

Production scheduling problems like the FJSP are commonly solved using dispatch-
ing rules. Sequences of perturbative heuristic can improve robust solutions. However,

3

forming sequences of a problem-specific constructive heuristic is less feasible. Research
on constructive selection hyper-heuristic is already ongoing at the level of the JSP.
Garza-Santisteban et al. (2019a) proposed a simulated annealing-based hyper-heuristic
(SA-HH) for the selection of multiple constructive heuristics in the form of HS to solve
the JSP. In this research, a set of problem state features adapted from a study by Mir-
shekarian and Šormaz (2016) is introduced to manipulate the constructive heuristics in
the HS. This set of features enables the accurate identification of constructive heuristic
to be applied with respect to the current problem state. Given the positive outcomes
of the SA-HH in solving the JSP, together with the presence of a set of pre-defined
heuristics, the SA-HH may emerge as a potential approach in solving the FJSP.

3. Proposed Method

This study proposes the SA-HH to select heuristics into an HS to solve the FJSP. As
shown in Algorithm 1, the SA-HH has four phases: initialisation, HS perturbation, HS
acceptance and temperature update.

Algorithm 1 SA-HH algorithm

// Initialisation
1: Generate an initial HS
2: Evaluate HS by applying HS on FJSP instance
3: Compute the fitness f(HS)
4: Set HS as the global best HS (denoted as HS*)
5: Initialise the initial temperature as θ and score matrix as S
6: while System has not reach max. no. of fitness evaluations do

// HS perturbation
7: Perturbate HS to form a neighbour HS (denoted as HS′)
8: Evaluate HS′ by applying HS′ on FJSP instance
9: Compute the fitness f(HS′)

// HS acceptance
10: if f(HS′) > f(HS) then
11: HS = HS′

12: if f(HS) > f(HS*) then
13: HS*= HS
14: else
15: if e

∆f

kθ > Uniform(0, 1) then
16: HS = HS′

17: Update S according to the outcomes of HS acceptance
// Temperature update

18: Update θ according to the cooling schedule
19: return HS*

3.1. Heuristic Scheme (HS)

The encoding of the hyper-heuristic’s solution in the form of HS is first explained. HS
is made up of an array of nG heuristic blocks. Each heuristic block consists of a set
of nH problem state features (f) and a corresponding action (a). The representation
of HS was originally presented by Garza-Santisteban et al. (2019a) for the JSP and

4

adapted in this research for the FJSP. Fig 1 shows an HS with nG heuristic blocks
where fg,h refers to the h-th problem state feature in g-th block, and ag refers to the
action at g-th block.

Figure 1. HS of nG heuristic blocks (Adapted from Garza-Santisteban et al. (2019a))

To represent the state of the FJSP, a set of features is introduced. Each heuristic
block of HS in this work incorporates seven problem state features as listed in Table 1.
The problem state features include a set of commonly used job-related attributes (i.e.
number of operations, number of jobs and processing time). Problem state features
can be classified into solution-related features and problem-related features (Garza-
Santisteban et al., 2019b). The solution-related features track the current progress,
whereas problem-related features track the remaining progress. The following equa-
tions are used to define the problem state features:

(1) Total processing times of all scheduled operations,

pU =

x∑
i=1

nUi∑
l=1

pi,l,k′ (1)

where:

Ui = set of scheduled operations of ji,

nUi
= total number of scheduled operations of ji,

k′ = index of machine assigned to oi,l, and

pi,l,k′ = processing time of oi,l on mk′ .

(2) Total processing times of all pending operations,

pV =

x∑
i=1

nVi∑
l=1

max
(
pi,l,1, pi,l,2, ..., pi,l,nB(oi,l)

)
(2)

where:

Vi = set of pending operations of ji,

nVi
= total number of pending operations of ji, and

nB(oi,l) = total number of alternative machines for oi,l.

5

(3) Total processing times of all operations,

pT = pU + pV (3)

Prior to machine assignment, the actual processing time is unknown for a pending
operation. Therefore, the maximum possible processing time is used in Equation (2).

Table 1. Problem state features considered

Class Feature Description Equation

Solution-
related

Average Processing
Time (APT)

Ratio between pU to pT .
pU

pT

Completed Jobs
(PC JOBS)

Ratio between the number of
completed jobs to the total
number of jobs, x.

∑x
i=1[zi=nUi]

x

Completed Operations
(PC OPS)

Ratio between the number of
completed operations to the
total number of operations.

∑x
i=1[nUi]∑x

i1
zi

Dispersion of
Processing Time Index
for Scheduled
Operations (DPT)

Ratio between the standard
deviation of pU , σ(pU) to the
mean of pU , µ(pU).

σ(pU)
µ(pU)

Problem-
related

Average Remain-
ing Processing Time
(ARPT)

Ratio between pV to pT .
pV

pT

Average Pending
Processing Times per
Job (NJT)

Ratio between pV to the total
number of pending operations.

pV∑x
i=1 nVi

Dispersion of
Processing Time Index
for Pending
Operations (DNPT)

Ratio between standard devia-
tion of pV , σ(pV) and the mean
of pV , µ(pV).

σ(pV)
µ(pV)

Action in each heuristic block is dictated by a pair of machine assignment rule
(MAR) and job sequencing rule (JSR), or collectively known as the MAR-JSR pair.
By referring to Figure 1, the HS is created with the following rules:

(1) All heuristic blocks in the HS should contain the same set of problem state
features in the same order (e.g. f1,1 and f2,1 should refer to the same problem
state feature).

(2) Each heuristic block should have a unique MAR-JSR pair.

6

3.2. Initialisation

The SA-HH starts with an initialisation phase where an HS of two heuristic blocks is
formed. Each heuristic block is created by selecting a MAR-JSR pair at random and
a random value [0, 1] is given to each problem state feature.

The initial HS is evaluated by applying it on an FJSP instance. Solving FJSP is an
iterative process where a small batch of operations is being loaded into the schedule
at a time, beginning with the first operation of each job. The current problem state
is computed and mapped to the problem state defined in each heuristic block by
computing its Euclidean distance using Equation (4).

Euclidean distance, d =

√√√√nH=7∑
h=1

(qh − rh)
2 (4)

where:

qh = h-th problem state feature value in the g-th block of HS, and

rh = h-th feature value of the current problem state.

The corresponding MAR-JSR pair of the heuristic block with the shortest Euclidean
distance is applied to schedule the first batch of operations. A partial schedule is
obtained at the end of each iteration. The schedule generation procedure continues to
execute until a complete FJSP schedule is obtained with all the operations loaded into
the schedule.

Upon obtaining a complete FJSP schedule, the fitness of the HS is computed by
using Equation (5). For a minimisation problem, the fitness function is defined as the
reciprocal of Cmax where a higher fitness value implies a better solution.

f (HS) =
1

Cmax
(5)

After the evaluation, the execution moves on to the next phase, i.e. HS perturbation.

3.3. HS Perturbation

Starting with an initial temperature θ, the SA-HH iteratively modifies the HS through
three perturbative strategies, i.e. S1: Perturbate a problem state feature value; S2: Add
a new block; and S3: Remove a block.

The HS perturbation results in HS′ which may grow to a maximum size determined
via parameter tuning (see Section 4.1). Upon reaching the maximum size, S2 is avoided
to prevent HS from growing indefinitely. Meanwhile, when the size of the HS is 2, S3
is avoided because the HS is not meaningful when there is only one heuristic block.

S1 perturbates the HS by modifying a randomly selected problem state feature value
in a heuristic block. For example, the value of f1,3 is modified from 0.39 to 0.58 in
Figure 2.

S2 adds an entirely new heuristic block to HS. The new heuristic block is created
with random values being assigned to each problem state feature and a MAR-JSR pair

7

Figure 2. Perturbate a problem state feature value

is selected. Meanwhile, S3 removes an existing heuristic block from HS. The selection
of MAR-JSR pairs (S2) and a heuristic block (S1 and S3) for perturbation are based
on the scores of the MAR-JSR pairs defined in a score matrix, S, which is given as
follows:

S =

s1,1 s2,1 · · · s1,R
s2,1 s2,2 · · · s2,R
...

...
. . .

...
sQ,1 sQ,2 · · · sQ,R

where Q and R refer to the number of MARs and JSRs considered, respectively, and
the index notation sq,r, q and r refer to MAR and JSR indices, respectively. The scores
in the score matrix are then converted into the probability of heuristic selection using
Equation (6).

P (sq,r) =
sq,r∑Q

q=1

∑R
r=1 sq,r

(6)

On the basis of the probability distribution, the MAR-JSR pairs with higher score
are more likely to be selected and added to HS′ via S2. In Figure 3, a new heuristic
block is added to the HS.

Figure 3. Add a new heuristic block

The heuristic block with MAR-JSR pairs of lower scores are more likely to be
selected for perturbation in S1 and elimination in S3. In Figure 4, the second heuristic
block is eliminated from HS considering a2 has the least score.

8

Figure 4. Remove an existing heuristic block

HS′ is evaluated as in Section 3.2. Subsequently, the algorithm enters an HS accep-
tance phase.

3.4. HS Acceptance

The SA-HH keeps track of the best performing HS (HS*) based on its fitness. The
logics on HS acceptance are described in lines 10 to 16 of Algorithm 1. HS′ can replace
the HS even if it is less fit by comparing its acceptance probability with a random
number. The acceptance probability is computed using Equation (7).

Acceptance probability = e
∆f

kθ (7)

where:

∆f = change of fitness function,

k = constant (k is fixed at 0.05), and

θ = current temperature.

The scores of each MAR-JSR pair in the HS is updated in S based on the rewards
and penalties listed in Table 2. Each MAR-JSR pair receives a score of 1 at the initial
state, giving them an equal chance of being selected. To speed up the algorithm’s
rate of convergence, a reward of 10 is given to increase the impact on the probability
distribution so that the selection is biased towards good-performing MAR-JSR pairs.
While SA-HH tends to accept poor HS via the acceptance probability, these MAR-JSR
pairs will still be rewarded but only half as much. Non-performing MAR-JSR pairs
could have their scores reduced to a minimum value of 1 to avoid the MAR-JSR pairs
from being neglected in the remaining iterations.

Table 2. Rewarding criteria for MAR-JSR pairs

Acceptance Outcome Value of Reward

Initial Score 1
Accepted as HS +10
Accepted as HS* +10
Accepted as HS via acceptance probability +5
Rejected −10
Minimum score 1

9

3.5. Temperature Update

At the end of each iteration, the temperature of the system (θ) is updated according
to a geometric cooling schedule, as stated in Equation (8).

θr+1 = β · θr (8)

where:

β = cooling rate, and

r = number of iterations.

HS perturbation, HS acceptance and temperature update phases will continue to
execute until the maximum number of iterations is reached with the HS* as the final
output.

3.6. SA-HH Based on HS Without Problem State Features

To evaluate the performance of the problem state features, an additional variant of
the SA-HH is introduced by eliminating the use of problem state features in the HS.
To facilitate communication, SA-HHPSF denotes the SA-HH based on the HS with
problem state features, whereas the one without will be denoted as SA-HHNO-PSF.

In the SA-HHNO-PSF, HS is created without problem state features. Repetition
of heuristic blocks is allowed and the HS can grow indefinitely. The nG MAR-JSR
pairs in the HS are called in a nG-periodic sequence so that a complete schedule is
obtained by repeating the same series. For example, an HS with two heuristic blocks
will be executed in a 2-periodic sequence, i.e. a1, a2, a1, a2, · · · . If a complete schedule
is obtained in less iterations than nG, the unused heuristic blocks are removed. For
example, if a complete FJSP schedule is obtained within five iterations using an HS
with six heuristic blocks, the sixth heuristic block is removed.

The entire design of the SA-HHPSF (Algorithm 1) remains the same in the SA-
HHNO-PSF except perturbation strategy S1, i.e. perturbating a problem state feature
value (as described in Section 3.3), which will be replaced with swapping the position
of two randomly selected heuristic blocks.

4. Experiment, Result and Discussion

Experiments are conducted to assess the SA-HHNO-PSF and the SA-HHPSF. The exper-
imental settings are described first, followed by parameter tuning and finally, results
of the comparison studies.

4.1. Experimental Settings

The performance of the SA-HHNO-PSF and the SA-HHPSF are evaluated using the
dataset by Kacem, Hammadi and Borne (2002a,b) which consists of six instances, i.e.
I1 to I6 and the dataset by Brandimarte (1993) which consists of 10 instances, i.e.
MK01 to MK10 with varying number of jobs (x), and the number of machines (y).

10

The complexity of each instance (given as x× y) is classified as low (0 to 99), medium
(100 to 199) or high (200 and above) in Table 3. As no arrival information is provided,
all the jobs are assumed to arrive and start at time unit 0 (Chen et al., 2020).

Table 3. Complexity of instances in the benchmark dataset

Instance x y Level of Complexity

I1 4 5 Low
I2 10 7 Low
I3 10 10 Medium
I4 15 10 Medium
I5 8 8 Low
I6 10 6 Low
MK01 10 6 Low
MK02 10 6 Low
MK03 15 8 Medium
MK04 15 8 Medium
MK05 15 4 Low
MK06 10 15 Medium
MK07 20 5 Medium
MK08 20 10 High
MK09 20 10 High
MK10 20 15 High

The SA-HHNO-PSF and the SA-HHPSF are implemented using MATLAB 2021a. Two
sets of experiments were designed to evaluate the algorithm’s performance. Table 4
lists the details of each experiment.

Table 4. Design of experiments

Experiment Description Hardware Used Performance
Indicator

I Performance comparison
between SA-HHNO-PSF

and SA-HHPSF

Windows server with
Intel Xeon CPU E3-1220
v5 3.00 GHz processors
and 24 GB of memory

Average Cmax

of 30 runs

II Performance comparison
among SA-HHNO-PSF,
SA-HHPSF and various
benchmark algorithms

Ubuntu server with Intel
Core i7-3930K 3.20 GHz
processors and 32 GB of
memory

Best Cmax

within 30 runs

4.2. Parameter Tuning

The initial temperature, cooling rate, number of fitness evaluations and the maximum
size of HS are tuned experimentally. Table 5 lists the three levels of values for parameter

11

tuning, i.e. low, medium and high. As such, 34 = 81 parameter combinations are
generated for the SA-HHPSF, whereas 3

3 = 27 parameter combinations are generated
for the SA-HHNO-PSF.

For each parameter configuration, the algorithms are executed 30 times on a repre-
sentative instance, i.e. MK06 with medium complexity. The configuration that enables
the algorithm to achieve the lowest average Cmax is identified as the reference con-
figuration which is then compared with the remaining configurations using the two-
sample T-test. Configurations with equal performance as the reference configuration
are grouped together and eventually, the final configuration is determined by identi-
fying the mode of each parameter. Table 5 presents the outcome of parameter tuning
which will be applied in the remaining experiments.

Table 5. Values before and after parameter tuning for SA-HHNO-PSF and SA-HHPSF

Parameter Parameter Values
Before Tuning

Parameters Values After
Tuning

High Medium Low SA-HHNO-PSF SA-HHPSF

Initial temperature 50,000 30,000 10,000 30,000 30,000
Cooling rate 0.900 0.500 0.005 0.900 0.900
Number of fitness
evaluations

3,000 2,500 2,000 3,000 3,000

Maximum number of
heuristic blocks

30 20 10 Not applicable 20

4.3. Experimental Results

Experiment I compares the SA-HHNO-PSF and the SA-HHPSF to assess the effect of
problem state features on the algorithm’s performance. For each instance, both variants
of the SA-HH are executed for 30 times and the average Cmax are computed. A sign
test (Derrac et al., 2011) is performed on the average Cmax of each algorithm at the
significance level of 0.05. The paired treatment values for the sign test are tabulated
in Table 6.

A null hypothesis is defined such that no difference between T1 and T2, whereas the
alternative hypothesis is that a difference exists between T1 and T2. Based on the result
in Table 6, there are 13 positive signs, two negative signs and a tied match. Hence, the
p-value is 0.00451. Given that the p-value < 0.05, the null hypothesis is rejected. A
conclusion is drawn such that a difference exists on the median of the signed differences.
This indicates that SA-HHPSF significantly outperforms the SA-HHNO-PSF.

12

Table 6. Paired treatment values for sign test

Instance Average Cmax of 30 runs (units of
time)

T1 − T2 Sign

SA-HHNO-PSF (T1) SA-HHPSF (T2)

I1 11.13 11.27 −0.14 −
I2 11.63 11.33 0.30 +
I3 8.20 8.00 0.20 +
I4 13.17 12.20 0.97 +
I5 16.23 15.73 0.50 +
I6 7.07 7.30 −0.23 −
MK01 42.17 42.00 0.17 +
MK02 30.70 28.73 1.97 +
MK03 204.00 204.00 0.00 #
MK04 70.07 69.60 0.47 +
MK05 182.07 178.07 1.40 +
MK06 75.23 73.83 3.10 +
MK07 157.97 154.87 4.00 +
MK08 525.93 523.87 2.06 +
MK09 327.33 326.90 0.43 +
MK10 239.40 235.10 4.30 +

Tied match.

The results suggest that the problem state features in the SA-HHPSF are important
in manipulating the application of MAR-JSR pairs with respect to the actual problem
state. The choice of MAR-JSR pair in the SA-HHPSF is determined by calculating
the problem state features are measuring the Euclidean distances between the current
problem state and each heuristic block of the HS. As the performance of MARs and
JSRs are problem sensitive, the selected MAR-JSR pairs made by the SA-HHPSF are
more accurate over the SA-HHNO-PSF which applies the MAR-JSR pairs in a periodic
sequence without referring to the problem state.

The performance of the schedule can be visualised using a Gantt chart. Therefore,
an example of FJSP schedule obtained by SA-HHPSF for MK06 is presented in Figure
5. The makespan of the schedule is 69 units of time.

13

Figure 5. An example of FJSP schedule for MK06.

14

Table 7 presents the average computational time of SA-HHNO-PSF and the SA-
HHPSF of 30 executions. The data shows that SA-HHPSF records shorter average
computational time than SA-HHNO-PSF.

Table 7. Average computation time of SA-HHNO-PSF and SA-HHPSF

Instance Average computational time (seconds)

SA-HHNO-PSF SA-HHPSF

I1 58 56
I2 159 148
I3 173 154
I4 425 358
I5 128 132
I6 176 168
MK01 220 201
MK02 320 267
MK03 952 776
MK04 376 336
MK05 530 417
MK06 937 705
MK07 720 646
MK08 916 924
MK09 1381 1395
MK10 1452 1432

Average 558 507

4.4. Competitiveness of SA-HHNO-PSF and SA-HHPSF

Experiment II compares the SA-HHNO-PSF, the SA-HHPSF to several published algo-
rithms as follow:

(1) Tabu Search (TS) (Brandimarte, 1993)
(2) Heuristic Algorithm (HA) (Ziaee, 2014)
(3) Genetic Algorithm (GA) (Chang, Tsai and Liu, 2014)
(4) Multi-agent model based on Chemical Reaction Optimization with Greedy Al-

gorithm (MACROG) (Marzouki, Belkahla Driss and Ghédira, 2017)
(5) Grey Wolf Optimization (GWO) (Jiang and Zhang, 2018)
(6) Self-learning Genetic Algorithm based on Reinforcement Learning (SLGA)

(Chen et al., 2020)
(7) Artificial Bee Colony Algorithm (Ferreira et al., 2020)

The SA-HHNO-PSF and the SA-HHPSF are executed using a number of fitness evalu-
ation which is less than all the benchmark algorithms. Table 8 details the algorithmic
configurations of MACROG, GWO, SLGA and ABC. GWO, SLGA and ABC are also
evaluated using adaptive parameters whose values depend on the number of jobs (x),
and number of machines (y), defined in the instance.

15

Table 8. Configurations used by benchmark algorithms

Algorithm Population
Size

No. of
Iterations

No. of Fitness
Evaluations

No. of
Replications

MACROG 1,000 1,000 1,000,000 Not stated
GWO 200 10× x× y 200× 10× x× y 10
SLGA 5× x× y 10× x× y Population size ×

No. of iterations
20

ABC (3×x)+(11×x) 2× x× y Population size ×
No. of iterations

20

Table 9 compares the best Cmax achieved by SA-HHNO-PSF and SA-HHPSF to the
best Cmax achieved by the benchmark algorithms evaluated against the dataset by
Kacem, Hammadi and Borne (2002a,b). The result shows that the performances of
SA-HHNO-PSF and SA-HHPSF are on par with most of the benchmark algorithms
except I3 and I4. In I3, both SA-HH variants are one time unit off the best Cmax

recorded by HA and GWO, whereas in I4, both SA-HH variants outperform HA and
GWO. I6 is excluded from this comparison study as the data was not reported in the
mentioned papers.

Table 9. Performance comparison in terms of best Cmax on the dataset by Kacem, Hammadi and Borne
(2002a,b)

Instance Best Cmax (units of time)

HA MACROG GWO SLGA SA-HHNO-PSF SA-HHPSF

I1 11 11 11 11 11 11
I2 13 20 11 11 11 11
I3 7 19 7 # 8 8
I4 12 # 13 # 11 11
I5 15 14 14 14 14 14

Not reported in the literature.

Meanwhile, Table 10 compares the best Cmax achieved by SA-HHNO-PSF and SA-
HHPSF to the best Cmax achieved by the benchmark algorithms on the dataset by
Brandimarte (1993). The result shows that the SA-HHNO-PSF and the SA-HHPSF

outperform TS, HA, GA and MACROG in most instances. The SA-HHNO-PSF and the
SA-HHPSF are also less competitive than GWO, SLGA and ABC due to the relatively
high number of fitness evaluation being used in the respective experiments. However,
further investigations could be initiated to verify whether both SA-HH variants could
achieve similar performances if the same number of fitness evaluation is used during
the experiments.

16

Table 10. Performance comparison in terms of best Cmax on the dataset by Brandimarte (1993)

Instance Best Cmax (units of time)

TS HA GA MACROG GWO SLGA ABC SA-
HHNO-PSF

SA-
HHPSF

MK01 42 42 41 40 40 40 39 40 41
MK02 32 28 28 32 29 27 26 27 27
MK03 211 204 204 204 204 204 204 204 204
MK04 81 75 66 64 64 60 60 67 66
MK05 186 179 178 179 175 172 169 174 174
MK06 86 69 73 85 69 69 58 68 67
MK07 157 149 150 172 147 144 144 147 147
MK08 523 555 523 552 523 523 523 523 523
MK09 369 342 327 421 322 320 308 312 311
MK10 296 242 257 358 249 254 # 222 217

Not reported in the literature.

On the basis of the values of 1/Cmax, the percentile rank of each algorithm is
calculated and visualised in Figures 6, 7 and 8 for instances with low, medium and
high complexities. I1, I5, MK03 and MK08 are excluded from the visuals due to similar
performances achieved by almost all the algorithms, whereas I3 and I4 are excluded
due to limited data.

Figure 6. Algorithms’ percentile rank on benchmark instances with low complexity

17

Figure 7. Algorithms’ percentile rank on benchmark instances with medium complexity

Data on MK10 for ABC is not reported in the literature.

Figure 8. Algorithms’ percentile rank on benchmark instances with high complexity

The results show that the SA-HHNO-PSF and the SA-HHPSF outperform or on par
with over 50% of the benchmark algorithms except MK04 for the SA-HHNO-PSF and
MK01 for the SA-HHPSF. Figures 6 and 7 demonstrate that majority of the algorithms
perform equally, as the instances are of low and medium complexities. As shown in
Figure 8, the SA-HHNO-PSF and the SA-HHPSF perform better on more complex in-
stances. This shows that the MARs and JSRs considered in this study can handle
complex instances while still performing well in simpler instances.

5. Conclusion

The research proposed two variants of SA-HH in selecting an HS (MAR-JSR pairs) for
the FJSP. These variants, SA-HH based on the HS with problem state features (SA-
HHPSF) and without problem state features (SA-HHNO-PSF), were evaluated using the
dataset by Brandimarte (1993) and Kacem, Hammadi and Borne (2002a,b). Results
of the sign test show that at the significance level of 0.05, a significant difference is
observed on the median of the signed differences on the average Cmax achieved by the
SA-HHPSF and the SA-HHNO-PSF in 30 runs. This observation indicates that the SA-
HHPSF significantly outperforms the SA-HHNO-PSF. Meanwhile, the SA-HHPSF and
the SA-HHNO-PSF outperform TS, HA, GA and MACROG in more than 50% of the

18

benchmark dataset in terms of the best Cmax achieved in 30 runs. Based on the per-
centile rank, the SA-HHPSF is able to outperform or achieve similar performances with
more than 75% of the benchmark algorithms on 8 out of 10 instances by Brandimarte
(1993) in terms of the best Cmax. Furthermore, the performance of the SA-HHPSF and
the SA-HHNO-PSF is better when they are applied on instances with high complexity.

The contributions of this research are threefold. Firstly, the SA-HH by Garza-
Santisteban et al. (2019a) which is originally proposed to solve JSP has been suc-
cessfully extended to solve the FJSP through the incorporation of MARs in HS to
solve the additional machine assignment sub-problem in FJSP. Secondly, a refined
computation of problem state features has been proposed to tackle the machine assign-
ment sub-problem and proven statistically significant. Thirdly, the success of SA-HH
in solving FJSP in this research has indicated its potential of solving similar optimi-
sation problems in the industry. Thus, this research presents an explanatory example
for such real-world applications. Future research will focus on three aspects. Firstly,
the perturbation strategies could be enhanced to speed up convergence. Secondly, the
rewarding system for the heuristic selection could be supported by a mathematical
model. Thirdly, further investigations on the algorithm’s performance could be made
in a dynamic and stochastic flexible job shop environment.

Acknowledgement

The work was supported by the Research University Grant awarded by Universiti
Sains Malaysia under Grant No. 1001/PMEKANIK/8014069.

Data Availability Statement

The data that support the findings of this study are available from the corresponding
author, L.-P. Wong, upon reasonable request.

References

Ahmed, Leena, Christine Mumford, and Ahmed Kheiri. 2019. “Solving Urban Transit Route
Design Problem Using Selection Hyper-heuristics.” European Journal of Operational Re-
search 274 (2): 545–559.

Basán, Natalia P., Mariana E. Cóccola, Alejandro Garćıa del Valle, and Carlos A. Méndez.
2019. “An Effective MILP-Based Decomposition Algorithm for the Scheduling and Redesign
of Flexible Job-Shop Plants.” Chemical Engineering Transactions 74: 613–618.

Bonab, Mohammad Babrdel, Siti Zaiton Mohd Hashim, Tay Yong Haur, and Goh Yong Kheng.
2019. “A New Swarm-Based Simulated Annealing Hyper-Heuristic Algorithm for Cluster-
ing Problem.” In Procedia Computer Science 163, Proceedings of the 16th International
Learning and Technology Conference: 228–236.

Brandimarte, Paolo. 1993. “Routing and Scheduling in a Flexible Job Shop by Tabu Search.”
Annals of Operations Research 41 (3): 157–183.

Burke, Edmund K., Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and
John R. Woodward. 2010. “A Classification of Hyper-heuristic Approaches.” In Handbook
of Metaheuristics. International Series in Operations Research & Management Science 146,
449–468.

Burke, Edmund K., Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, En-

19

der Özcan, and Rong Qu. 2013. “Hyper-heuristics: A Survey of the State of the Art.” Journal
of the Operational Research Society 64 (12): 1695–1724.

Cao, Yang, Haibo Shi, and DaLiang Chang. 2022. “Differential Evolution Algorithm with Dy-
namic Multi-population Applied to Flexible Job Shop Schedule.” Engineering Optimization
54 (3): 387–408.

Chang, Hao-Chin, Hung-Te Tsai, and Tung-Kuan Liu. 2014. “Application of Genetic Algorithm
to Optimize Unrelated Parallel Machines of Flexible Job-shop Scheduling Problem.” In
Proceedings of the 11th IEEE International Conference on Control and Automation, 596–
599.

Chen, Ronghua, Bo Yang, Shi Li, and Shilong Wang. 2020. “A Self-learning Genetic Algorithm
Based on Reinforcement Learning for Flexible Job-shop Scheduling Problem.” Computers
and Industrial Engineering 149.

Choong, Shin Siang, Li-Pei Wong, and Chee Peng Lim. 2018. “Automatic Design of Hyper-
heuristic Based on Reinforcement Learning.” Information Sciences 436-437: 89–107.

Choong, Shin Siang, Li-Pei Wong, and Chee Peng Lim. 2019. “An Artificial Bee Colony Algo-
rithm With a Modified Choice Function for the Traveling Salesman Problem.” Swarm and
Evolutionary Computation 44: 622–635.

Derrac, Joaqúın, Salvador Garćıa, Daniel Molina, and Francisco Herrera. 2011. “A Practical
Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing
Evolutionary and Swarm Intelligence Algorithms.” Swarm and Evolutionary Computation
1 (1): 3–18.

Drake, John H., Ahmed Kheiri, Ender Özcan, and Edmund K. Burke. 2020. “Recent Advances
in Selection Hyper-heuristics.” European Journal of Operational Research 285 (2): 405–428.

Ferreira, Inês C., Bernardoa Firme, Miguel S. E. Martins, Tiago Coito, Joaquim Viegas, João
Figueiredo, Susana M. Vieira, and João M. C. Sousa. 2020. “Artificial Bee Colony Algo-
rithm Applied to Dynamic Flexible Job Shop Problems.” Communications in Computer and
Information Science 1237 CCIS: 241–254.

Garza-Santisteban, Fernando, Jorge M. Cruz-Duarte, Ivan Amaya, José Carlos Ortiz-Bayliss,
Santiago Enrique Conant-Pablos, and Hugo Terashima-Maŕın. 2019a. “Influence of Instance
Size on Selection Hyper-Heuristics for Job Shop Scheduling Problems.” In Proceedings of
the 2019 IEEE Symposium Series on Computational Intelligence, 1708–1715.

Garza-Santisteban, Fernando, Roberto Sánchez-Pámanes, Luis Antonio Puente-Rodŕıguez,
Ivan Amaya, José Carlos Ortiz-Bayliss, Santiago Conant-Pablos, and Hugo Terashima-
Marin. 2019b. “A Simulated Annealing Hyper-heuristic for Job Shop Scheduling Problems.”
In Proceedings of the 2019 IEEE Congress on Evolutionary Computation, 57–64.

Jiang, Tianhua, and Chao Zhang. 2018. “Application of Grey Wolf Optimization for Solving
Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases.” IEEE Access
6: 26231–26240.

Kacem, Imed, Slim Hammadi, and Pierre Borne. 2002. “Pareto-optimality Approach for Flex-
ible Job-shop Scheduling Problems: Hybridization of Evolutionary Algorithms and Fuzzy
Logic.” Mathematics and Computers in Simulation 60(3-5): 245–276.

Kacem, Imed, Slim Hammadi, and Pierre Borne. 2002. “Approach by Localization and Mul-
tiobjective Evolutionary Optimization for Flexible Job-shop Scheduling Problems.” IEEE
Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 32(1):
1–13.

Kheiri, Ahmed, and Ed Keedwell. 2015. “A Sequence-based Selection Hyper-heuristic Utilising
a Hidden Markov Model.” In Proceedings of the 2015 Genetic and Evolutionary Computation
Conference, 417–424.

Kheiri, Ahmed, Ender Özcan, Rhyd Lewis, and Jonathan Thompson. 2016. “A Sequence-based
Selection Hyper-heuristic: A Case Study in Nurse Rostering.” In Proceedings of the 11th
International Conference on the Practice and Theory of Automated Timetabling, 503–505.

Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi. 1983. “Optimization by Simulated An-
nealing.” Science 220 (4598): 671–680.

Lin, Jian, Dike Luo, Xiaodong Li, Kaizhou Gao, and Yanan Liu. 2017. “Differential Evolution

20

based Hyper-heuristic for the Flexible Job-shop Scheduling Problem with Fuzzy Process-
ing Time.” In Lecture Notes in Computer Science 10593 LNCS, Proceedings of the 11th
International Conference on Simulated Evolution and Learning: 75–86.

Lin, Jian. 2019. “Backtracking Search based Hyper-heuristic for the Flexible Job-shop Schedul-
ing Problem with Fuzzy Processing Time.” Engineering Applications of Artificial Intelli-
gence 77: 186–196.

Luo, Min, Jian Lin, and Li Xu. 2020. “Solving Flexible Job-shop Problem with Sequence-
dependent Setup Times by Using Selection Hyper-heuristics.” In ACM International Con-
ference Proceeding Series, Proceedings of the 2nd International Conference on Artificial
Intelligence and Advanced Manufacture, 428–433.

Marzouki, Bilel, Olfa Belkahla Driss, and Khaled Ghédira. 2017. “Multi Agent Model Based
on Chemical Reaction Optimization with Greedy algorithm for Flexible Job shop Schedul-
ing Problem.” In Procedia Computer Science 112, Proceedings of the 21st International
Conference on Knowledge - Based and Intelligent Information and Engineering Systems:
81–90.

Mirshekarian, Sadegh, and Dušan N. Šormaz. 2016. “Correlation of Job-shop Scheduling Prob-
lem Features with Scheduling Efficiency.” Expert Systems with Applications 62: 131–147.

Mohan, Jatoth, Krishnanand Lanka, and A. Neelakanteswara Rao. 2011. “A Review of Dy-
namic Job Shop Scheduling Techniques.” In Procedia Manufacturing 30, Proceedings of the
14th Global Congress on Manufacturing and Management: 34–39.

Mönch, Lars, John W. Fowler, Stéphane Dauzère-Pérès, Scott J. Mason, and Oliver Rose.
2011. “A Survey of Problems, Solution Techniques, and Future Challenges in Scheduling
Semiconductor Manufacturing Operations.” Journal of Scheduling 14 (6): 583–599.

Nguyen, Su, Mengjie Zhang, and Kay Chen Tan. 2017. “Surrogate-Assisted Genetic Program-
ming with Simplified Models for Automated Design of Dispatching Rules.” IEEE Transac-
tions on Cybernetics 47 (9): 2951–2965.

Qu, Rong, Nam Pham, Ruibin Bai, and Graham Kendall. 2015. “Hybridising Heuristics Within
an Estimation Distribution Algorithm for Examination Timetabling.” Applied Intelligence
42 (4): 679–693.

Sabar, Nasser R., Masri Ayob, Graham Kendall, and Rong Qu. 2013. “Grammatical Evo-
lution Hyper-heuristic for Combinatorial Optimization Problems.” IEEE Transactions on
Evolutionary Computation 17 (6): 840–861.

Sharma, Pankaj, and Ajain Jain. 2016. “A Review on Job Shop Scheduling with Setup Times.”
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture 230 (3): 517–533.

Soto, Carlos, Bernabé Dorronsoro, Héctor Fraire, Laura Cruz-Reyes, Claudia Gomez-Santillan,
and Nelson Rangel. 2020. “Solving the Multi-objective Flexible Job Shop Scheduling Prob-
lem with a Novel Parallel Branch and Bound Algorithm.” Swarm and Evolutionary Com-
putation 53: 1–16.

Zhang, Hongliang, Gongjie Xu, Ruilin Pan and Haijiang Ge. 2021. “A Novel Heuristic Method
for the Energy-efficient Flexible Job-shop Scheduling Problem with Sequence-dependent
Set-up and Transportation Time.” Engineering Optimization 1–22.

Zhou, Yong, and Jian-Jun Yang. 2019. “Automatic Design of Scheduling Policies for Dy-
namic Flexible Job Shop Scheduling by Multi-objective Genetic Programming Based Hyper-
heuristic.” In Procedia CIRP 79, Proceedings of the 12th CIRP Conference on Intelligent
Computation in Manufacturing Engineering: 439–444.

Zhou, Yong, Jian-Jun Yang, and Lian-Yu Zheng. 2019a. “Hyper-Heuristic Coevolution of Ma-
chine Assignment and Job Sequencing Rules for Multi-Objective Dynamic Flexible Job Shop
Scheduling.” IEEE Access 7: 68–88.

Zhou, Yong, Jian-Jun Yang, and Lian-Yu Zheng. 2019b. “Multi-agent Based Hyper-heuristics
for Multi-objective Flexible Job Shop Scheduling: A Case Study in an Aero-engine Blade
Manufacturing Plant.” IEEE Access 7: 21147–21176.

Ziaee, Mohsen. 2014. “A Heuristic Algorithm for Solving Flexible Job Shop Scheduling Prob-
lem.” International Journal of Advanced Manufacturing Technology 71 (1-4): 519–528.

21

