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Abstract

The Artificial Bee Colony (ABC) algorithm is a swarmiélligence approach which has initially been psggbto solve
optimisation of mathematical test functions witkirdque neighbourhood search mechanism. This neighbod search
mechanism could not be directly applied to comlainal discrete optimisation problems. In orderdgokie combinatorial
discrete optimisation problems, the employed arldaker bees need to be equipped with problem-speoéfrturbative
heuristics. However, a large variety of problemesfi@ heuristics are available, and it is not asyetask to select an
appropriate heuristic for a specific problem. Irsthaper, a hyper-heuristic method, namely a MedifChoice Function
(MCF), is applied such that it can regulate thecgla of the neighbourhood search heuristics adbptethe employed
and onlooker bees automatically. The Lin-Kernigllar) local search strategy is integrated to imprdlve performance
of the proposed model. To demonstrate the effentise of the proposed model, 64 Traveling Salesmalnldm (TSP)
instances available in TSPLIB are evaluated. Onamesrthe proposed model solves the 64 instand@9%6% from the
known optimum within approximately 2.7 minutes. &rfprmance comparison with other state-of-the-sgbrithms
further indicates the effectiveness of the proposedel.

Keywords: hyper-heuristic; metaheuristic; bee atbar; combinatorial optimisation problem; neighbleood search; Lin-Kernighan.

1. Introduction

A computational optimisation methodology involvesding feasible solutions from a finite set of
solutions, and identifying only the optimal solut{s). Swarm intelligence algorithms constitute b-slass of
computational optimisation methodology [1]. Swarmtelligence algorithms are developed based on
emergence of collective behaviours pertaining feopulation of interacting individuals in adapting the
local and/or global environments. Examples of swantelligence algorithms include Particle Swarm
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Optimisation (PSO) [2], Ant Colony Optimisation (& [3], Bat Algorithm (BA) [4], Firefly Algorithm
(FA) [5], Cuckoo Search Algorithm (CSA) [6], andesmspired algorithms [7-9].

Bees are highly organised social insects. Theirigairrelies on assigning an important task to elae in
a cooperative mode. The tasks include reproducfiomaging, and constructing hive. Within these fgsk
foraging is one of the most important tasks, beedlis bee colony must ensure an undisrupted s pdypd
to survive. The food foraging behaviours of beas lwa computationally realised as algorithmic tdolsolve
various optimisation problems.

The Artificial Bee Colony (ABC) algorithm is one tifie popular bee-inspired algorithms. Proposed by
Karaboga [7], it is inspired by the foraging belwawvs of honey bees in a colony. In the ABC algonitta
food source represents a possible solution to ghengsation problem in the search space, and ttotane
amount of the food source represents the fitnegkaifsolution. The ABC algorithm defines threedypf
bees: employed bees, onlooker bees, and scoutAresnployed bee looks for new food sources ardbad
neighbourhood of the food source that it has preshovisited. An onlooker bee observes dances alatts
a food source to visit. It tends to select gooddfsources from those found by the employed beescoiit
bee searches for new food sources randomly.

The mechanism of the ABC algorithm is as followkeTemployed bees first perform a neighbourhood
search nearby the food source in their memory $odution). Then, they go back to the hive and qrenf
dances. The dances inform the onlooker bees abelfithess of each solution. Each onlooker beergbse
and selects a food source to perform another neighiood search based on a probability proportitm#éhe
food source fitness (i.e. a roulette wheel selegti®he onlooker bees tend to select good foodcssufrom
those found by the employed bees. The employedamhabker bees perform neighbourhood search by
perturbing an existing solution to produce a nelutsmn. A greedy approach is applied to decide Wweeto
accept the newly perturbed solution. If a soluttmuld not be improved after a pre-determined nundfer
trails (denoted as tHamit), it is abandoned. The employed bee associatdtht;mon-improving solution (i.e.
local optimum) is abandoned, and it becomes a doeeit The scout bee explores the search spacedatna
and looks for a new solution.

This ABC algorithm has been used to solve optinosabf mathematical test functions [7]. Promising
results have been reported by using a number of A&tants [10-12]. To find the optimum solution tbe
mathematical test functions, the neighbourhoodckeaerformed by the employed and onlooker bees is
formulated as follows (Eq. (1)):

Vi = X+ ¢ (% - Xq) 1)

in whichx; is the solution associated to tiath employed beey; is j-th element (i.e. dimension) of solutign

v; is the new solution produced basedxgry; is j-th element of solution;, j is a random integer between 1
anddim (the dimensionality of the problem),is a random real number between -1 and 1,kasda random
integer between 1 amd(the number of employed bees).

In recent years, the ABC algorithm has been madlifie solve combinatorial discrete optimisation
problems, such as quadratic assignment problem ft8jedian problem [14-16], minimum spanning tree
problem [17-19], clustering problem [20-22], unceipated facility location problem [23-25], Knapsack
Problem (KP) [26-28], Job Shop Scheduling Probld®SP) [29-31], Vehicle Routing Problem (VRP) [32,
33], and Traveling Salesman Problem (TSP) [34, Bijwever, Eq. (1) cannot be directly applied when
solving this set of problems. The employed and okéo bees are prescribed with a perturbative hiui(isr
a set of perturbative heuristics) to generate nautisns. These heuristics are problem-specificristance,
the neighbourhood search heuristics for TSP inclagertion mutation, swap mutation, random 2-oft, kn
view of the availability of a large variety of pilem-specific heuristics, the key question concegniine
selection of a particular heuristic has been pasebe literature in recent years. This leads triotivation
of using hyper-heuristics for tackling such probjemhich is the focus of our research in improvihg ABC



algorithm.

A hyper-heuristic is a high-level automated methody for selecting or generating a set of heursstic
[36]. The term “hyper-heuristic” was coined by Dawger et al. [37]. There are two main hyper-heigist
categories, i.e. selection hyper-heuristic and geimn hyper-heuristic [38]. These two categories be
defined as ‘heuristics to select heuristics’ andutlistics to generate heuristics’, respectively].[3oth
selection and generation hyper-heuristics can bbdudivided into two categories based on the neabd the
heuristics to be selected or generated [38], nareéher constructive or perturbative hyper-hewsstiA
constructive hyper-heuristic incrementally buildsc@mplete solution from scratch. On the other hamd,
perturbative hyper-heuristic iteratively improves @xisting solution by performing its perturbative
mechanisms. The heuristics to be selected or geakirma hyper-heuristic model are known as the el
heuristics (LLHS).

A typical selection hyper-heuristic model consistswo levels [36]. The low level contains a prable
representation, evaluation function(s), and a $qiroblem specific LLHs. The high level manages athi
LLH to use for producing a new solution(s), anditidecides whether to accept the solution(s). Thegethe
high-level heuristic performs two separate tasks (i) LLH selection and (ii) move acceptance [3Bhe
LLH selection method is a strategy to select an@miate LLH from a set of available alternativesidg the
search process. The available LLH selection metlcisade simple random [40], choice function [41}43
tabu search [44], harmony search [45], backtrackewych algorithm [46], and a set of reinforcenteatning
variants [47, 48]. The move acceptance method deaithether to accept the new solution generatetiedoy
selected LLH. Examples of move acceptance methodside Only Improvement [49], All Moves [43],
Simulated Annealing [50], Late Acceptance [40], anche variants of threshold-based acceptance.

Striking a balance between intensification and diifigation is important for a hyper-heuristic [381].
Intensification encourages a hyper-heuristic toufoon the promising LLHs, which leads to a good
performance. On the other hand, diversificationvegras a forgive-and-forget policy which encourages
attempts on those rarely used LLHs. Both intersiiin and diversification are crucial componentstees
capability of an LLH varies during different phasefsthe search process [52, 53]. An LLH with a good
performance in one phase should not dominate theesuent search process, while a poor performance i
one phase should not lead to a permanent discriimmaf an LLH in the later phases. In this studg,LLH
selection method which is based on a choice functiamely the Modified Choice Function (MCF) [48],
integrated with the ABC algorithm. Specifically, Qs used to select the neighbourhood search Hieuris
deployed by the employed and onlooker bees. Treoreaf choosing MCF is because it is able to adalyti
control the weights of its intensification and disification components during different phaseshef search
process. Besides that, to enhance the performdrtbe proposed MCF-ABC model, it is integrated wiitle
Lin-Kernighan (LK) local search strategy [54]. Theoposed model is denoted as MCF-ABC. It is tested
using benchmark TSP instances provided in TSPLE. [5

This article starts with a description of the rethtvork in Section 2. Section 3 presents the prehd4CF-
ABC model. The results and findings including pemfance comparison are presented in Section 4.l¥inal
concluding remarks are presented in Section 5.

2. Related Work

This section describes the related work of theyst8ection 2.1 focuses on the applications of bepired
algorithms to solve TSP (or variants of TSP). Sec®.2 reviews some hyper-heuristic models whigh ar
based on a choice function. Section 2.3 introdwsm®se local-search-based strategies for combinatoria
optimisation problems.



2.1. Application of the Bee-inspired Algorithms to SoN&P

TSP is an NP-hard discrete combinatorial optimisafiroblem [56]. When solving a TSP, the aim is to
look for the shortest Hamiltonian path, which is foute that leads a person to visit each locatime and
only once, and to return to the starting locatigthwhe minimum total distance [57]. Suppose that ¢ities
are located in some geometric region that the niigts between two cities obey the usual axiomsdidtance
function of a metric space. TSP can be modelednaanagirected weighted graph. L& = (V, E) be an
undirected weighted complete graph, in whitls a set oh cities V ={vy,v,, . . . V}) and E is a set of edges
(E={(r,9 :r,seV}). Eis usually associated with a distance matiixs= {d, ¢ where d, s refers to the
distance between cityand citys. Let [] represents all possible permutations of\seA solution of a TSP is
to determine a permutatione [], which has the minimum total round trip distanage,shown in Eg. (2), in
whichzn(i) € V indicates thé-th element int.

Crsp(@ €D = XI5 drgy ] + drmyn) (2

A number of swarm intelligence algorithms have bemployed to solve TSP, such as PSO [58, 59], ACO
[60, 61], FA [62, 63], BA [64, 65], CSA [66, 67]nd some hybrid algorithms [68-71]. In this study fecus
on bee-inspired algorithms to solve TSP. A disarssin the application of bee-inspired algorithmsatve
TSP or its variants is presented. The associateghlneurhood search heuristic/mechanisms are also
highlighted.

Marinakis et al. [72] proposed a Honey Bees Maibygtimisation (HBMO) model to solve TSP. The
HBMO model employs a crossover heuristic and anaBgng Neighbourhood Search (ENS) method to
perform neighbourhood search. The crossover heuissable to identify the common characteristi€the
parents, while the ENS method combines multiplallsearch strategies, i.e. 2-opt, 2.5-opt, andt3-op

Wong [73] proposed a Bee Colony Optimisation (BGjdel. In the BCO model [73], a bee performs
neighbourhood search on a selected dance (a sokmiastructed by another bee) based on a Fragnmentat
State Transition Rule (FSTR). The FSTR techniqus ai bee in constructing a feasible solution urnier
influence of arc fithess and heuristic distancesi@es FSTR, the BCO model is equipped with thréerot
components, i.e. waggle dance mechanism, locatlseand pruning strategy. These components arelddind
as a generic model [74] to solve multiple combinatooptimisation problems, such as JSSP [75-77],
Sequential Ordering Problem (SOP) [78], symmet&®T79-81], and asymmetric TSP [82].

Masutti and de Castro [9] proposed a bee-inspitgdrithm known as TSPoptBees to solve TSP. The
TSPoptBees model defines three types of beesetauiter bees, scout bees, and recruited bees.ethater
bees recruit other bees to exploit promising acddlse solution search space. Crossover heuriatesised to
combine the solution associated with a recruitezldr®d its recruiter. The scout bees explore thelsespace
by using mutation heuristics on randomly selectddt®ns from the population. Both the recruited acout
bees utilise a random method to select the heesisti

Banharnsakun et al. [83] extended the ABC algorithith a Greedy Subtour Crossover (GSX) heuristic
[84] to solve TSP, which is denoted as ABC-GSX. @ pmlly, GSX is adopted as the neighbourhood cear
heuristic. In ABC-GSX, the new solutions generatieding the neighbourhood search are further impifove
by using the 2-opt local search heuristic. GSX lidieao improve the exploitation process of the ABC
algorithm [83].

Karaboga and Gorkemli [85] proposed a combinat@kBC algorithm to solve TSP. A Greedy Sub-tour
Mutation (GSTM) heuristic serves as the neighboadhsearch heuristic of the employed and onlookesbe
The resulting algorithm is denoted as ABC-GSTM. ABSTM outperforms eight GA variants with different
mutation operators [85].

Akay et al. [86] adopted a neighbour-based 2-optarend a 2-opt local search in the ABC algorithm.
The resulting algorithm is denoted as 2-opt ABGoathm. During the neighbourhood search, an emmloye



or onlooker bee first performs a neighbour-baseghmove for the current solution. If the neighbbased
2-opt move is not able to improve the solution, $b&ition undergoes a 2-opt local search. The éxeetal
results show that the 2-opt ABC algorithm outpearfsithe 2-opt local search strategy.

Li et al. [87] applied an inner-over operator [&8] the neighbourhood search heuristic in ABC. Tineti-
over operator is a modified version of the invensioutation. However, the selection of a sub-segue¢ndbe
inverted is related to the population, therefore diperator has some features of the crossoverstieuihe
ABC algorithm with the inner-over operator outpenfis the Bee Colony Optimisation in [8].

Zhong et al. [89] integrated the ABC algorithm withhreshold-based acceptance method. A new solutio
update equation and a greedy hybrid operator amgoged as the neighbourhood search mechanism.eie n
solution adds an edge based on another randondgtsdl solution to the current one. If the two sohs
have a common edge, the edge to be added is fdvasst on a set of nearest cities. After an edgddsd,
the neighbour solutions are generated by apply@éwvgrse, insert, and swap heuristics. The best artieng
three solutions serves as the candidate solutiba. émpirical results show that the ABC algorithnthwa
threshold-based acceptance method outperformsvitiah greedy acceptance.

Kocer and Akca [35] proposed an Improved ABC (IAB&lyorithm with a loyalty and a threshold
mechanisms to solve TSP. These two mechanismsdadatision making strategy which decides whether a
bee serves as a worker or an onlooker. Besides dhatopt local search strategy is integrated toichv
trapping in the local optimum [35].

Kiran et al. [34] analysed the effect of integrgtgingle and multiple neighbourhood search heua(wstin
a discrete ABC model. The heuristics include Ran@®wap (RS), Random Insertion (RI), Random Swap of
Subsequences (RSS), Random Insertion of Subseq(Risg Random Reversing of Subsequence (RRS),
Random Reversing Swap of Subsequences (RRSS),arbR Reversing Insertion of Subsequence (RRIS).
The experiments in [34] can be divided into twoegatries. The first category consists of seven ABfdels
with a single neighbourhood search heuristic. Td@sd category consists of two ABC models with ipldt
neighbourhood search heuristics (i.e. [RS, RSS,HRR&d [RI, RIS, RRIS]). When multiple neighbourdoo
search heuristics are employed, a random selestrategy is applied. The empirical results show the
[RI, RIS, RRIS] model has a better performance 8 Tnstances with the number of cities ranging betw
30 and 101. Comparatively, the RRS model perforettebin two TSP instances with 225 and 280 cities.

Besides the classical TSP instances, bee-inspigeditams have been adopted to solve different TSP
variants. Karabulut and Tasgetiren [90] proposetisarete ABC algorithm for solving the TSP with &m
windows (TSPTW). TSPTW involves a searching forathpwvith minimum cost that visits a set of citiexe
and returns to the starting city within a pre-defintime window (i.e. ready time and due date). dsilele
solution of TSPTW requires a visit to each citypeomade within the corresponding ready time anddue.

A two-phase destruction and construction heuristiadopted as the neighbourhood search heuristibein
discrete ABC algorithm proposed by Karabulut andgkgiren. During the destruction phase, a number of
randomly selected cities are removed from the goiutn the construction phase, the NEH insertiearfstic

[91] is applied to re-insert the removed citieskoanto the solution.

Pandiri and Singh [92] adopted the ABC algorithmdgolving multiple TSP (MTSP) instances. There are
more than one salesperson in an MTSP. The aimlmotofor a path for each salesperson to visitdities,
subjected to a condition that each city must beateds exactly once by only one salespersthe
neighbourhood search mechanism in the ABC algoriphaposed by Pandiri and Singh [92] is as follows.
Each city in a current solution has a certain pbilig to be copied to form a neighbourhood solatio
otherwise the city is considered as an unassigitgdThe unassigned cities are randomly inserteéd the
formed neighbourhood solution.

Pandiri and Singh [93] employed an ABC variant fmlving a multi-depot TSP instance with load
balancing. Besides having multiple salespersonis, ihoblem considers multiple depots, in which each
salesperson is stationed at a different depot. tabke of a multi-depot TSP is to look for a route éach
salesperson to start and end at his/her correspgmigipot, such that each city is visited exactlgeoby one



salesperson. As such, the total distance traveetthd salespersons is minimised, and the workloadng
salespersons is balanced. Pandiri and Singh [98iesba similar neighbourhood search mechanisrhatsit
[92].

Zhong et al. [94] proposed a dynamic Tabu ABC mddelsolving MTSP with precedence constraints.
MTSP with precedence constraints is a special CASdTSP whereby the cities need to be visited in a
specific order. A dynamic Tabu list is designedhendle the constraints. Multiple probabilistic tmo
update mechanisms are implemented.

Based on the reviewed literatures in this seciids,noticed that bee-inspired algorithms canriiegrated
with a single or multiple neighbourhood search etig(s). This article proposes a new ABC modelhwit
multiple neighbourhood search heuristics. Spedificathe MCF is used to guide the selection of
neighbourhood search heuristics (i.e. LLHSs) ingheposed MCF-ABC model.

2.2.Modified Choice Function

Cowling et al. [41] proposed a hyper-heuristic lohea a choice function. It is a score-based approac
which measures the score of each LLH based onrésiqus performance. The score of each LLH is
composed of three different measurementsfi.&,, andf;. The first measuremerft, represents the recent
performance of each LLH (Eq. (3)):

fi(hy) = Zpan1 22 3)

Tn(hj)

whereh; denotes th¢th LLH, 1,(h;) denotes the fitness difference between the cus@ntion and the newly
proposed solution by tha" application ofty, Ty(h) denotes the amount of time taken by tlepplication of
h; to propose the new solutios](0,1)is a parameter which prioritises the recent peréoroe.

The second measuremefaf reflects the dependency between a consecutivepalLHs (Eq. (4)):

In(hy, h})
Tn(hkh )

folhi, hy) = B (4)

whereln(hk,h) denotes the fitness difference between the cus@ntion and the newly proposed solution by
the n" consecutive appllcat|on &fc andhy; (i.e. h;is executed right aften), T.(hh;) denotes the amount of
time taken by the™ consecutive appllcat|on d:& andh; to propose the new solutiofi,1(0,1) is a parameter
which prioritises the recent performance. Bcbﬂand f, are the intensification component of the choice
function. They encourage the selection of highgrenaince LLHSs.

The third measuremerft, records the elapsed time since the last execafiarparticular LLH (Eq. (5)):

fa(hy) = «(hy) ®)
where 7(h;) denotes the elapsed time (in seconds) since &bie elxecution oh;. Note thatf; acts as a
diversification component in the choice functionptioritises those LLHs that have not been usedftong

time.
The score of each LLH is computed as a weighted afuime three measurements f,, andfs, as shown in

Eq. (6):
F(hy) = afi(hy) + ffa(h hy) + ofs(hy) (6)

whereaq, £ ando are the respective weights fgff,, andfs. In the initial model [41], these parameters were



statically fixed. Promising results have been reggbrwhen the proposed choice function (i.e. EQ) $)
paired with AM as its move acceptance method teestile sales summit scheduling problem.

The parameters in Cowling et al. [41] need to beetuand pre-determined. In order to have a more
effective version of the hyper-heuristic, the pastens can be dynamically controlled during execytias
shown in Cowling et al. [95]. The values @fandf increase when the selected LLH is able to imprdwee t
solution. The growth is proportional to the magdéuof improvement over the previous solution. Oa th
other hand, if the selected LLH performs a non-iomprg move,« andp are decreased proportionally to the
fitness difference. This strategy is able to imgréive model in Cowling et al. [41].

However, Drake et al. [42] stated some limitatiasfsthe strategy in Cowling et al. [95]. Firstly,
rewarding/penalising the LLH proportionally to tfimess difference over the previous solution iguable.
During the early stages of optimisation, it is eadior a relatively weaker heuristic to obtain aeajr
improvement from a poor starting solution, and @aggr reward is assigned to this weaker heuriSticthe
other hand, the improvement made in the later stafeoptimisation is minor (due to convergence 1o a
optimum solution, either local or global), and aéo reward is assigned. However, the improvemertenia
the later stages is more significant than the impnoent made in the early stages, therefore thisuging
scheme might be misleading. Besides that, if not&wsl can achieve improvement for a number of tiens,
this LLH selection method can descend into randetection due to the low: and 8 settings (i.e. the
diversification component;, dominates the score). Targeted at these limiatibDrake et al. [42] proposed a
variant of choice function, namely MCF, to manatgeparameters. In MClg, andp are combined as a single
parameteryl. The scorel, is computed as follows (Eq. (7)):

Fuhy) = pilfa(hy) + fo(hi, W] + oifa(hy) (@)

If the selected LLH yields an improvement, inteigsifion is prioritised by setting to a static maximum
value close to one, at the same tifnis reduced to a static minimum value close to Z&rben the selected
LLH fails to improve the solutiony is penalised linearly with a lower bound of 0.@hile 6 grows at the
same rate. This prevents the intensification coraptm(i.e f; andf,) from losing their influence too quickly.
Specifically, p and § are computed as follows (Eq. (8) and (9)), in whichenotes the fitness difference
between the newly proposed solution and the prawolution.

Yo 0.99, d >0 8
ue(hy) = {max[0.0l,ut_l(hj) —0.01], d<0 ®)

() =1 - p,(hy) 9)

In Section 3, the proposed model which incorport€&s- into the ABC algorithm is presented. The main
function of MCF is to help the employed and onlaokees to select an appropriate neighbourhood lsearc
heuristic (i.e. LLH).

2.3.Local-Search-based Strategies

Local search strategies have been used widely lwvingomany combinatorial optimisation problems.
Generally, the procedure of this category of stii@teconsists of the following steps:
1. Randomly generate a feasible soluti8n,
2. Perform a transformation ddto produceS’.
3. If S’is found to be better tha®) replaceSwith S'.
4. Repeat steps 2 and 3 until no improvement is olesert this stageSis said to be locally optimal.



A number of local search strategies that have hbsed for solving TSP include 2-opt [96], 3-opt [9@hd
LK local search [54].

In general, a local search strategy is able talyadbcal optimal solution. However, its capabilgylimited
to intensification, i.e., exploitation around theighbourhood of the initial solution. One of thdeefive
methods to increase the chance of a local seartegy to obtain the global optimal solution isé¢start the
search after a particular region of the searchespm@&xtensively exploited. A local search whiclapatd a
restart mechanism is known as a Multi-start Loedrg8h (MSLS) [98]. In MSLS, a local search is akiito
begin from different initial solutions. As such,istable to yield a set of local optimal solutioideally, the
global optimum (or a near-global-optimal) solutian be found in the set of local optimal ones. MBISLS
variants have been developed to solve various amatdnial problems, such as permutation flow shop
scheduling problem [99], generalised quadratic ipleltKP [100], periodic VRP [101], and dynamic TSP
[102].

In addition, diversification of a local search #dgy can be improved by repeatedly performing a
perturbation and a local search on a solution. €rud method is Iterated Local Search (ILS) [108]ILUS,
an initial solution iteratively goes through a disification phase and an intensification phase.im@uthe
diversification phase, a new solution is producgdbrforming a perturbation to the current solutidifter
that, the intensification phase is initiated tofpan local search based on the newly produced isoluOne
ILS-based strategy for solving the TSP, i.e., th&i@Ged Lin-Kernighan (CLK) heuristic, was proposad
[104, 105]. In the CLK heuristic, an LK local selaris repeatedly performed on a TSP solution, wiich
followed by a double-bridge move [104] to excharfger arcs in the solution with the other four arcs.
Besides TSP, ILS-based strategies have been useatious applications, i.e. variants of VRP [106/]1
bin-packing problem [108], and different schedulprgblems [109-111].

Many swarm intelligence algorithms have good globahrch ability. As such, a balance between
intensification and diversification can be achieved integrating a local search strategy with a swar
intelligence algorithm. The usefulness of hybridgsiocal search and swarm intelligence algorithas lieen
demonstrated in many publications [112-117]. Mdtidaby the research in this domain, the proposedMC
ABC model is integrated with an LK local searctat#gy in this study. The local search takes pléee aach
neighbourhood search performed by the employedhlmoer bees before applying the acceptance ariteri

With the inclusion of local search, the proposedAVEBC model has some similarities with the MSLS
and ILS models. In the initialisation phase of MEBC, a population of solutions is initialised torfo
multiple starting points of the local search praceBuring the activities performed by the employedi
onlooker bees, each of these solutions undergoesL@nprocedure, i.e. repetitively goes through a
perturbation using a selected LLH and an LK loearsh. During the activities performed by the sdm4, if
a solution could not be improved aftamit trials, a restart mechanism (i.e. a replacemethesolution with
a random solution) takes place. Therefore, MCF-A&fares some common features of MSLS during the
initialisation phase and scout bee activities, @/similarities between MCF-ABC and ILS are showrihia
activities of the employed and onlooker bees.

3. The Proposed Model

The pseudo code of a classical discrete ABC maigl §5] is shown in Algorithm |. The model consists
of four phases: initialisation, employed bee phaselpooker bee phase, and scout bee phase. In the
initialisation phase, the maximum iteratiomgxIteratior), population sizefopSizg the maximum number
of trails of a solution l{mit), and an LLH to be used for the neighbourhood cdeémy the employed and
onlooker beesllp,) are pre-determined. Then, the solution associttedach food source is initialised
randomly. The employed and onlooker bees perforighbeurhood search using an LLH determined during
the initialisation phase throughout the search ggsc



Algorithm I: Pseudo code of a classical discreteCABodel.

1 Procedure ABC()

/linitialisation
2 InitialisemaxIteration popSizelimit andllh,
3 fori=1to popSiz&
4  foodSourcf] = initialiseSolutions()
5 foodSourcf].counter= 0
6 end for
7 while not reachingnaxliterationdo

/[Employed bee phase

8 for i=1to popSiz&
9 newSok neighbourSeacfgodSourcg], Ilh,)
10 if getFitnessiewSal < getFitnesspodSourcf])
11 foodSourcfg] = newSol
12 foodSourcf].counter= 0

13  else

14 foodSourcf].counter-+
15 endif

16 end for

//Onlooker bee phase
17 for i =1to popSiz&
18 k= selectSolBasedOnRouletteWheelSelecfmqSource
19  newSok neighbourSeachgodSourcgK], Ilh,)
20  if getFitnessiewSa) < getFitnesgpodSourcf])
21 foodSourcg] = newSol

22 foodSourcg].counter= 0
23 else

24 foodSourcf].counter-+
25 endif

26 end for

//Scout bee phase
27 for i=1to popSiz&
28  if foodSourcf].counter >foodSourcg].limit

29 foodSourcf] = initialiseSolutions()
30 foodSourcf].counter= 0

31 endff

32 end for

33 end while

34 end Procedure

The proposed MCF-ABC model is a bee algorithm withltiple neighbourhood search heuristics (i.e.
LLHs). The seven perturbative LLHs for TSP proposed34], namely, Random Insertion (RI), Random
Swap (RS), Random Insertion of Subsequence (RIShd&n Swap of Subsequences (RSS), Random
Reversing of Subsequence (RRS), Random Reversiggrtion of Subsequence (RRIS) and Random
Reversing Swap of Subsequences (RRSS), is adopts=ides that, the proposed MCF-ABC model also
includes three additional LLHs i.e. Shuffle Subsame (SS), Random Shuffle Insertion of Subsequence



10

(RSIS) and Random Shuffle Swap of Subsequence (RF8&8refore, a total of ten LLHs are adopted i th
MCF-ABC model. These ten LLHs involve four main égpof operations, i.e. reverse, insert, swap and
shuffle. Specifically, RRS performs a reverse opena Rl and RIS perform an insert operation, R8 RRS
perform a swap operation, and SS performs a shoffégation. Among the ten LLHSs, four of the LLHs(i
RRIS, RRSS, RSIS, and RSSS) involve combinatiortsvoftypes of operations. Note that the subsequence
of a TSP solution considered by RRS, RIS, RSSa8& the four LLHs with combined operations covézs s

in a range of [2lim], wheredim denotes the TSP dimension. The details of the té#slare shown in Table

1.

Table 1: Details of the ten integrated LLHs in MEF-ABC model.

Operations LLHs Description
Reverse Random Reversing of Invert a randomly selected subsequence
Subsequences (RRS) )
. Randomly pick a city from a solution, remove itrfrdhe solution, and reinsert it
Insert Random Insertion (RI) to a random position of the solution.
Random Insertion of Randomly pick a subsequence from a solution, rentdwem the solution, and
Subsequence (RIS) reinsert it to a random position of the solution.
Random Swap (RS) Swap the position of two randamlgcted cities in a solution.
Swap (RRaSng)o m Swap of Subsequence%wap the position of two randomly selected subsecgeein a solution.
Shuffle Shuffle Subsequence (SS) Re-order a randsehécted subsequence at random.
Random Reversing Insertion of Invert a randomly selected subsequence, then rethevieverted subsequence
Subseqguence (RRIS) from the solution, and reinsert it to a random fiosiof the solution.
Random Reversing Swap of | Swap the position of two randomly selected subsecpeein a solution. Each of
Combined Subsequences (RRSS) the subsequences has a 0.5 probability to be gdert
Operations Random Shuffle Insertion of | Re-order a randomly selected subsequence at ratdlemiemove the shuffled
Subsequence (RSIS) subsequence from the solution, and reinsert itrtemdom position of the solution.
Random Shuffle Swap of Swap the position of two randomly selected subsecpeein a solution. Each of
Subsequence (RSSS) the subsequences has a 0.5 probability to be sduffl

The fithess function of the proposed MCF-ABC modelormulated as the round trip distance (i.e. tour
length) to visit each city once and only once, egtdrn to the starting city (as shown in Eq. (Z})e pseudo
code is shown in Algorithm Il. Similar to the clasd discrete ABC model, the proposed MCF-ABC model
consists of four phases: initialisation, employe@ Iphase, onlooker bee phase, and scout bee phd4EF-
ABC, the solution associated with each employedibédtialised randomly. In order for an employeee or
an onlooker bee to select an appropriate LLH, &iéded by the MCF as explained in Section 2.2. Hddh
has a scorel;. Each employed bee or onlooker bee selects an lhddd¢d on thé& score (lines 9 and 22 in
Algorithm Il). The computation df is shown in Eq. (7). The LLH with the largésscore is selected and ties
are decided randomly. After performing a neighboorhsearch, the generated solution by the neighioodr
search is improved using the LK local search [G#jeé 11 and 24 in Algorithm Il). Then, a greedy
acceptance method is applied to decide whethecdepa the newly produced solution or otherwises@in 2-

13 and 25-26 in Algorithm II). After that, tHe score of the selected LLH is updated using Eq(l{ii¢s 18
and 31 in Algorithm II).

While the employed bees and onlooker bees perfaighbourhood search to exploit the promising areas
of the search space, the scout bees focus on afiploiof a new region in the search space [10128]. As
such, the scout bees are good for avoiding locdimap However, some studies suggest that random
replacement of an abandoned solution decreasesetireh efficiency, because an abandoned solutiold co
contains more useful information than a randomteiu119, 120]. In this article, the same mechaniss
proposed in the original ABC algorithm by Karabd@a is applied, i.e. if a particular solution (i.eood
source) has not been improved after lihat trials, it is abandoned. The employed bee assutiti the
abandoned food source becomes a scout bee, andsttg search for a new food source (i.e. solutain)
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random. The scout bee uses a random initialisgtionedure to generate a new solution (line 35 goAthm

).

Algorithm II: Pseudo code of the MCF-ABC model.

1 Procedure MCF-ABC()

/linitialisation
2 InitialisemaxIteration popSizelimit andLLHSet
3 fori=1to popSiz&
4  foodSourcf] = initialiseSolutions()
5 foodSourcf].counter= 0
6 end for
7 while not reachingnaxliterationdo

/[Employed bee phase

8 for i=1to popSiz&
9 selectedLLH= selectLLH_BasedOnMCF()
10  newSok neighbourSeacfdodSourcf], selectedLLH
11 localSearcmewSa) //optional
12 if getFitnessiewSa) < getFitnes$podSourcf])
13 foodSourcg] = newSol
14 foodSourcf].counter= 0

15 else

16 foodSourcg].counter-+

17  endif

18 updateChoiceFunctiomlgctedLLH //eq. (7)
19 end for

//Onlooker bee phase
20 for i = 1to popSiz&
21 k= selectSolBasedOnRouletteWheelSelecfmyqSource
22  selectedLLH= selectLLH_BasedOnMCF()
23  newSok neighbourSeacffodSourci], selectedLLHl
24 localSearch(newsol) //optional
25 if getFitnessfewSal < getFitnesgpodSourcf])
26 foodSourcf] = newSol

27 foodSourcg].counter= 0

28 else

29 foodSourcf].counter-+

30 endif

31 updateChoiceFunctiomlgctedLLH //eq. (7)
32 end for

//Scout bee phase
33 for i=1to popSiz&
34  if foodSourcg].counter >foodSourcH].limit

35 foodSourcf] = initialiseSolutions()
36 foodSourcf].counter= 0

37 endif

38 end for

39 end while

40end Procedure
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4. Results and Discussion
The experimental setting, experimental results,@rdparison studies are presented in this section.
4.1.Experimental Settings

All experiments were conducted using a computeh witlltiple Intel i7-3930K 3.20 GHz processors, and
with 15.6GB of memory. At any particular time, edebt was executed by one processor only. The pezpo
MCF-ABC model is implemented in C programming laage. The implementation of the LK local search is
obtained from Concorde [105].

The performance of the proposed model is investithdty using benchmark TSP datasets taken from
TSPLIB [55]. A total of 64 instances are used, déimeir dimension ranges from 101 to 85900 citiese Th
numerical figure appears in the problem instanceendenotes the dimension of the problem, e.g. £ild@&
101-city TSP; d493 is a 493-city TSP.

Two key performance indicators are defined to memshe performance of the proposed MCF-ABC
model as follows: the percentage deviation fromvim@ptimum,é (measured in %) and computational time
(measured in seconds) to obtain the best tourterdte formula for calculating is stated in Eq. (10) where
C* andC(rr) denote the best known tour length (or optimunr feangth) and the obtained tour length of a
particular TSP instance respectively:

_ Cc(m-c”

c*

) x 100 (10)

When an instance is solved by the proposed MCF-ABGel, a total of 30 test replications are
conducted. The shortest tour length produced bi eaglication and the computational time to obtiich
tour length are recorded. This leads to the crealf®@ = {c, Cy, ...,C3o} and T = {ty, t5, ..., tzq}, in which Cis
a set of tour lengths anflis a set of computational time corresponding ® time to obtain the best tour
length inC. For setC, the average of 30 tour lengths are identified dedoted agc. Then, the average
deviation percentages (i.&.¢ from C+ are computed using Eq. (10). For $gthe average is computed and
is denoted agr.

4.2.Parameter Tuning

There are two parameters in MCF-ABC, pepSizeandlimit. To determine both parameters, a structured
design-of-experiment technique, i.e. the face-eshtientral composite design (CCD) [121], is empdoyal
64 TSP instances are grouped into four classesdingoto their dimensions. Classes A, B, and Cudel
instances with dimensions [1:500], [501:1000], §&801:10000], respectively, while Class D includes
instances with dimension >10000. For each class, TP instance is selected as a representatianaesfor
the CCD experiments. Specifically, gil262, u7244461, and rl11849 are selected as the represeatati
instances of Classes A, B, C, and D respectivelye flesulting parameter settings from these reprathen
instances are generalised to other TSP instandkslie corresponding class.

In accordance with the face-centred CCD [121], gaatameter is set at three different levels, by, |
medium, and high, as shown in Table 2. A total Bf93combinations of these parameters at each leeel a
generated. The experimental setting is illustrateBigure 1. To have a fair comparison, all experimns are
terminated after a fixed number of neighbourhoaata® operations (i.e. 10000 operations). For exanipe
experiment withpopSize= 10 would be terminated after 1000 iterations,levtiie experiment witpopSize=
20 would be terminated after 500 iterations. Ta&b&hows the detailed configurations and resulth@®iCCD
design experiment.
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Table 2: Low, medium, and high levelspafpSizeandlimit.

Low | Medium | High
popSize| 10 20 30
limit 100 200| 300

Figure 1: A face-centred central composite desigh two parameters.

Table 3: Effects opopSizeandlimit on the MCF-ABC performance.

Savg

Configuration | popSize| limit | Class A| Class B| Class C| Class D

gil262 u724 | fnl4461 | rl11849
1 10 100 0 0.039 0.225 0.472
2 10 | 200 0 0.007| 0.21 0.447
3 10 | 300 0 0.026| 0.222 0.576
4 20 100 0 0.031 0.277 0.608
5 20 | 200 0 0.012 0.232 0.575
6 20 | 300 0 0.016| 0.25 0.584
7 30 100 0 0.054 0.272 0.655
8 30 | 200 0 0.029 0.23 0.647
9 30 300 0 0.039 0.284 0.676

MCF-ABC is able to solve gil262 to the known optimuwsing all the nine configurations pbpSizeand
limit. For Classes B, C, and D, the best results arie\aath from the second configuration, ipapSize10
and limit=200. With this configurationpopSizeis set at the low level aniémit is set at a medium level.
Besides that, it is worth-noting that the configima with limit=200 outperforms all other configurations with
the sam@opSizeAs such, 200 is selected fanit, which is in line with the setting in [122] as Wwdbased on
the tuning results, MCF-ABC withopSize10 andimit=200 is used in the following experiments to saile
64 TSP instances.
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4.3.Experimental Results of MCF-ABC

In order to examine the effect of the integratedHLpool described in Table 1 listed in Section ¥ th
proposed MCF-ABC model with the ten integrated LLidscompared with a variant denoted as MCF-
ABC(4) which only integrates four LLHs with basiperations, i.e. RRS, RIS’, RSS’, and SS, wherel®y/ RI
and RSS’ consider subsequence with sizdifd: Besides, the proposed MCF-ABC model is compavidd
a Random-ABC model to examine the effectivenegstefjrating the MCF hyper-heuristic in the ABC mbde
The Random-ABC model utilises the same sets of L{ités ten LLHs) as MCF-ABC. In Random-ABC, a
random strategy is used for the employed bees almbker bees to select an LLH for each neighboulhoo
search. For all the three algorithms (i.e. MCF-ABLZF-ABC(4), and Random-ABC), the stopping criterio
is based on the pre-determined execution iterafioms1000 iterations). The average tour lengt),(@average
deviation percentages,(g, and average computational time to obtain the &elsition (i) obtained by the
three algorithms are shown in Table 4.

Table 4: Performance comparison of MCF-ABC, MCF-AB)C and Random-ABC based on 64 TSP benchmarknioesa

Optimum MCF-ABC MCF-ABC(4) Random-ABC
He Sav%)  ur(s) He Jav%)  ur(s) He Jav%)  u1(s)

eil101 629 629.0 0.000 0.0 629.0 0.000 .0 629.0 00M. 0.0

lin105 14379 14379.0 0.000 00 14379.0 0.000 0.0 3790 0.000 0.0
pr107 44303 44303.0 0.000 0{0 44303.0 0.000 0.0 0383  0.000 0.0
gri20 6942 6942.0 0.000 00 6942.0 0.000 0.0 6942.0.000 0.0
pri24 59030 59030.0 0.000 01 59030.0 0.000 0.1 3G90  0.000 0.1
bier127 118282 118282.0 0.000 01 118282.0 0.000 1 |0. 118282.0 0.000 0.1
ch130 6110 6110.0 0.000 0J0 6110.0 0.000 0.0 6110.®.000 0.0

pri36 96772 96772.0 0.000 0{2 96772.0 0.000 0.1 7267  0.000 0.1
gri37 69853 69853.0 0.000 0[0 69853.0 0.000 0.1 5%98 0.000 0.1
pri44 58537 58537.0 0.000 118 58537.0 0.000 22 3685 0.000 1.4
ch150 6528 6528.0 0.000 0J0 6528.0 0.000 0.1 6528.1.000 0.0

kroB150 26130 26524.0 0.000 0[0 26524.0 0.000 0.1 65220 0.000 0.0
kroA200 29368 26130.0 0.000 o1 26130.0 0.000 0.2 613Q.0 0.000 0.1
pri52 73682 73682.0 0.000 1/8 73682.0 0.000 2.0 8786  0.000 11
ul59 42080 42080.0 0.000 0{0 42080.0 0.000 0.0 @eo8 0.000 0.0
sil75 21407 21407.0 0.000 02 21407.0 0.000 0.2 o204  0.000 0.1
brg180 1950 1950.0 0.000 0J0 1950.0 0.000 0.0 0950. 0.000 0.0

rat195 2323 2323.0 0.000 02 2323.0 0.000 0.2 P323. 0.000 0.1

d198 15780 15780.0 0.000 1]3 15780.0 0.000 1.2 ase78 0.000 0.9
kroA200 29368 29368.0 0.000 o1 29368.0 0.000 0.1  9368.0 0.000 0.0
kroB200 29437 29437.0 0.000 0[0 29437.0 0.000 0.1 94320 0.000 0.9
gr202 40160 40160.0 0.000 0(6 40160.0 0.000 0.9 6@01  0.000 0.5
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Optimum MCF-ABC MCF-ABC(4) Random-ABC
He Savd%)  u1(s) He Javd%)  p1(S) Uc Javd%)  p1(S)

tsp225 3916 126643.0 0.000 0(0 126643.0 0.000 0.1 26643.0 0.000 0.4
ts225 126643 3916.0 0.000 0j1 3916.0 0.000 0.1 .8916 0.000 0.1
pr226 80369 80369.0 0.000 1l4 80369.0 0.000 3.4 6803 0.000 2.1
gr229 134602 134602.0 0.000 08 134602.0 0.000 1.3 134602.0 0.000 0.9
gil262 2378 2378.0 0.000 0.1 2378.0 0.000 0.2 2878. 0.000 0.1
pr264 49135 49135.0 0.000 01 49135.0 0.000 0.1 3%91 0.000 0.1
a280 2579 2579.0 0.000 0J0 2579.0 0.000 0.0 2579.®.000 0.0
pr299 48191 48191.0 0.000 02 48191.0 0.000 0.2 9481 0.000 0.2
[in318 42029 42029.0 0.000 15 42029.0 0.000 4.4 0282 0.000 1.6
rd400 15281 15281.0 0.0002 2|4 15281.0 0.000 4.1 2816 0.000 2.2
fla17 11861 11861.0 0.000 57 11861.0 0.000 4.8 6118 0.000 6.3]
gra31 171414 171414.0 0.000 130 171414.0 0.000 1 15. 171414.0 0.000 12.7
pr439 107217 107217.0 0.000 213 107217.0 0.000 2.7 107217.0 0.000 2.7
pch442 50778 50778.0 0.000 116 50778.0 0.000 1.3 77860 0.000 1.5
d493 35002 35002.7 0.002 2019 35002.9 0.002 216 0033 0.002 15.8
att532 27686 27686.5 0.002 1144 27686.9 0.003 2.6 27686.7 0.003 11.9
ali535 202339 202339.0 0.000 1016 202339.0 0.000 5 |9. 202339.0 0.000 84
si535 48450 48498.3 0.100 53|13 48535.1 0.176 552  8508L1 0.120 47.4
pa561 2763 2763.1 0.004 71 2763.3 0.011 7.5 2763.9.010 8.3
u574 36905 36905.0 0.000 2(1 36905.0 0.000 3.5 $8690 0.000 3.6
rats575 6773 6774.3 0.020 6.3 6774.4 0.021 5.8 8774.0.020 55
p654 34643 34643.0 0.000 2115 34643.0 0.000 19.2 6430 0.000 21.2
d657 48912 48915.1 0.006 15|5 48913.5 0.003 14.9 9148 0.004 11.9
gr666 294358 294404.1 0.016 321 294396.8 0.013 8 B2. 294389.7 0.011 31.
u724 41910 41916.5 0.016 12|19 41917.4 0.018 12.9 916ih 0.015 14.9
rat783 8806 8806.0 0.000 412 8806.0 0.000 6.5 8806. 0.000 4.1
dsj1000 18659688 18661580.6 0.010 58.2 18663249.7.0190 60.3 18662940.7 0.017 46|19
pr1002 259045 259073.0 0.011 16.6 259231.0 0.072 .1 p5 2591734 0.050 29.7
si1032 92650 92650.0 0.000 4{4 92650.0 0.000 112 265®0 0.000 55
vm1084 239297 239322.3 0.011 243 239321.6 0.010 .5 P1 2393285 0.013 33.3
pcb1173 56892 56897.9 0.010 15.4 56899.0 0.012 12.1 56896.7 0.008 16.9
d1291 50801 50843.7 0.084 15(7 52383.2 3.115 49.3 196%7 2.289 684
d1655 62128 62221.6 0.151 27,0 62246.9 0.191 B7.8  221@®2 0.132 51.4
uls17 57201 57354.2 0.268 2416 57377.6 0.309 227 735%5 0.277 40.8
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Optimum MCF-ABC MCF-ABC(4) Random-ABC
He Savd%)  u1(s) He Javd%)  p1(S) Uc Javd%)  p1(S)

u2152 64253 64426.5 0.270 283 64433.9 0.282 28.7 441%2 0.252 39.4
pr2392 378032 378549.6 0.137 28.9 378418.2 0.102 .1 A3 378559.5 0.140 41.0
fI3795 28772 28825.1 0.184 1317 32294.8 12.244 .2%8 31084.0 8.036 275.6
fnl4461 182566 183002.8 0.239 66(6 183019.3 0.248 8.7 4 183008.5 0.242 51.8
r5915 565530 567990.2 0.435 94(2 573022.9 1.325 9.41p  572285.2 1194  109.4
pla7397 23260728 23324321.9 0.273 247.6 23328860.6.293 228.0 23323272.4 0.269 191.9
r111849 923288 928015.1 0.512  308.9 934773.2 1.24848.9 933587.4 1116 3685
pla85900 142382641 143484917.5 0.774 90825 14403278 1.163 5804.4 143851971.1 1.032 645B.7

Average: 0.055 162.4 0.326 1150 0.238 125.7

The average scores ¢f,q obtained by MCF-ABC, MCF-ABC(4), and Random-ABC Table 4 are
0.055%, 0.326%, and 0.238%, respectively. On aeerdtCF-ABC yields betted,, than those of MCF-
ABC(4) and Random-ABC. MCF-ABC solves all 64 ingtas to 0.055% from the known optimum within
2.7 minutes #162.6s). Besides that, MCF-ABC is able to constbtesolve 40 out of 64 instances (i.e.
62.5%) to the known optimum for 30 replications.

To statistically compare the performance of eagbrithm, the Wilcoxon signed-rank test [123] witho8
confidence interval is employed. In the Wilcoxogred rank test, the difference betweendhgobtained by
two compared algorithms is ranked. The tie instarare discarded, arid denotes the effective sample size
(i.e. number of instances) after discarding ths tiestances. The sum of ranks for the instanceshiich
MCF-ABC outperforms its competitor is denotedRiswhile R denotes the sum of ranks for the instances in
which MCF-ABC is inferior to its competitor. Accdrdy to the Wilcoxon signed rank test, the testigtiat W
is compared with a critical valu®/, n [123]. W<W(,; n indicates that there is a significant differenceaaen
the performance of the two algorithms, whil>Wc,;  indicates otherwise. The results of the Wilcoxon
signed ranks test are summarised in Table 5.

Table 5: The Wilcoxon signed ranked test for theaparison of MCF-ABC, MCF-ABC(4), and Random-ABC.

Comparisons + . v R .
(MCF-ABC vs ...) N | R R | W | Wgin | Significant Difference
MCF-ABC(4) 22| 226| 27| 27 69 vyes

Random-ABC 21| 1771 54 54 58 yes

The Wilcoxon signed rank test results show tha,ptoposed MCF-ABC model significantly outperforms
MCF-ABC(4) and Random-ABC. The comparison with MBBEC(4) shows that the inclusion of more LLHs
has positive effects on the performance, while dbmparison with Random-ABC indicates that the MCF
selection method performs better than the randdectsen method.

A convergence analysis is conducted based on aepnotvith the largest dimension in TSPLIB, i.e.
pla85900. The best-so-far(computed using Eqg. (10)) obtained in each iteratibthe three algorithms are
plotted in Figure 2. As shown in Figure 2, MCF-ABC (ith four LLHs converges rapidly, but it is tzgd
in a local optimum, while Random-ABC and MCF-ABCthviten LLHs are more capable of escaping the
local optimum. On the other hand, the proposed MBIG model converges to a better solution than tlodse
MCF-ABC(4) and Random-ABC in the later stage ofdkarch process.
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Figure 2: Convergence graph of MCF-ABC, MCF-ABC@)d Random-ABC when solving pla85900.

To further analyse the experimental results of pheposed MCF-ABC model, the average execution
distribution (in terms of percentage) of LLHs cho$y the MCF is recorded. In this analysis, the filasses
which categorise the 64 TSP instances based andineénsions described in Section 4.2 are utiliJedhle 6
shows the average execution distribution of LLHe&ed by the MCF when solving multiple instances i
each class. Details about the categorisation ofd.bblsed on the type of operations can be foundbieTl
listed in Section 3.

Table 6: Average execution distributions (in petages) of each LLH in MCF-ABC with local search.

Operations Reverse Insert Swap Shuffle Combineddlipas

) 0,
LLHs RRS RI RIS RS RSS SS RRIS RR$S RS$IS Riﬁgg(m)

Class A (limJ[101:500]) 10.594| 10.560 10.359 10.60112.184| 9.815| 8.226] 10.100 9.70F 7.8%3  0.0p0

Class B (imJ[501:1000]) | 14.823| 14.951] 15.347| 14.563| 11.370 5.78¢ 8.035 5.4%2 4382 5.290 0014

Class C
(dim0[1001:10000]) 16.549| 16.596| 16.634 | 16.534| 10.184 4,392 6.851 4636 3.250 4.374 0159

Class D ¢im>10000) 18.176| 17.738| 17.746/ 17.458 16.452 2.342 3.046 2.232  2|224556 0.643

Overall Average 12.833 12.834 12.800 12.464 11.y597.724| 7.749| 7.87§ 7.164 6.5(00  0.0p5

Based on Table 6, RSS is selected most frequett§nwgolving the instances in Classdif1[101:500]).
RIS is favoured when solving the instances in CRg8im[501:1000]) and CdimJ[1001:10000]). RRS
yields the highest percentage when solving thentgs in Class Od{m>10000). For all classes, LLHs which
perform single reverse, insert, and swap opera@oasnore frequently selected than other LLHs {he.top
five selected LLHs with the highest percentageasteclass are RRS, RI, RIS, RS, and RSS).

The intensification components of MCF (ifeandf,) generally evaluate the performance of an LLH Hase
on the improvement it yields over its computatiéeedcution time. Besides that, the influencé, @ndf, are
prioritised by the control mechanism pfand¢ (i.e. Eq. (8) and (9)), wherehy andJ are set to constant
maximum and minimum values, respectively, for apriowved move. For a deteriorated mopeis slightly
decreased whereasis slightly increased. Therefore, in the propos#@F-ABC model, RRS, RI, RIS, RS,
and RSS are frequently selected as they are aloltéin good scores 6f andf, (i.e. bringing improvement
within a relatively short computational time). et control mechanism is modified such that a greate
increment ofd for a deteriorated move is performed, the infleet the diversification componertt, is
increased and other LLHs which are not frequertilysen would have a higher chance to be selected.
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Besides that, an experiment that excludes the ld&llsearch is conducted to investigate the exatutio
distribution of LLHs in MCF-ABC without the localearch strategy. The results are presented in Table
When the local search is excluded, the distribgtiohthe selected LLHs for solving different classé TSP
instances are similar. MCF tends to concentrateetecting RRS and RI, while other LLHs has lessichao
be selected.

Table 7: Average execution distributions (in petages) of each LLH in MCF-ABC without local search

Operations Reversg Insert Swap Shuffle Combinedalipas

) 0,
LLHs RRS RI RIS RS RSS SS RRIS RR$S RS$IS Riﬁgg(m)

Class A (limJ[101:500]) 74958 | 23.2520 0.73]1 0.105 0.077 0.059| 0.666] 0.095 0.03p 0.026 5.4Pp8

Class B {imJ[501:1000]) 71.239| 26.104 1.07% 0.149 0.112 0.072 1.035 01380400 0.035] 10.115

Class CdimJ[1001:10000])| 70.836| 28.564 0.199 0.024 0.019 0.011 0.311 00230060 0.005] 18.061

Class D im>10000) 60.086] 38.974 0.46 0.011 0.013 0.004 0/42Z¥013| 0.003] 0.004 23.3611

£

Overall Average 72.952| 25.395 0.66% 0.092 0.068 0.049 0.644 00840260 0.022 9.474

4.4.Competitiveness of MCF-ABC

This section compares the proposed MCF-ABC modt stiate-of-the-art algorithms. The comparison is

conducted based on the following publications éhbreviation of each publication is shown in péareres):

e The analysis of discrete artificial bee colony aidjon with neighbourhood operator on traveling satan
problem (ABC) [34].

« A hierarchic approach based on swarm intelligencsotve the traveling salesman problem (ACO-ABC)
[70].

« 2-opt based artificial bee colony algorithm fongod traveling salesman problem (2-opt ABC) [86].

« TSPoptBees: A bee-Inspired algorithm to solve thedling salesman problem (TSPoptBees) [9].

« A generic bee colony optimisation framework for dnatorial optimisation problems (BCO) [73].

» Hybrid discrete artificial bee colony algorithm tvithreshold acceptance criterion for traveling Salen
problem (HDABC) [89].

« Chained lin-kernighan for large traveling salesmpesblems (CLK) [105].

» Effective heuristics for ant colony optimisationhtandle large-scale problems (ESACO) [60].

¢ Quantum inspired particle swarm combined with lardighan-helsgaun method to the traveling salesman
problem (QPSO) [115].

* Honey bees mating optimisation algorithm for theliElean traveling salesman problem (HBMO) [72].

In order to have a fair comparison, tmaxlIterationof the proposed MCF-ABC are set such that it uses
equal or less number of neighbourhood search dpesafis compared with the benchmark algorithm (if
stated) as shown in Table 8. Note that a ceilimgtion (i.e.[Dim/2]) is used to determin@gopSizen [34] and
[70]. For example, if the problem is eil51, theualbofpopSizés [51/2|=[25.5=26. In ACO-ABC [70], each
of the ACO and ABC algorithms is executed for 2tdtions. TSPoptBees uses a dynamic populati@y siz
and its stopping criteria are based on the maximumber of iterations without improvement. The agera
final popSizeandmaxIterationfor each instance are reported in Masutti and a&rG [9]. The average final
popSizeis varied between 99.60 and 177.00, while theay@maxlIterationused is varied between 1155.83
and 4271.83. As the source code of CLK [105] islalse in the Concorde TSP solver softwa@LK is re-

Y Available: http://www.math.uwaterloo.ca/tsp/corder
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executed on the TSP instances in Classes C and d@ef{eaed in Section 4.2) for comparison. CLK siragle-
solution-based modelpépSizel), and it is allowed to run for 10,000 iteratiorsxcept this maximum
iteration, the default settings in Concorde arainetd for other configurations, which include tlewdl of
backtracking (i.e. (4, 3, 3, 2)-breadth), choice tbé kick (i.e. 50-step random-walk kick), and the
initialisation method (i.e. Quick-Boruvka). For tbemparison with ABC [34], ACO-ABC [70], 2-opt ABC
[86], TSPoptBees [9], BCO [73], HDABC [89], and CLKO5], themaxIterationof MCF-ABC is set to 1000,
while for the comparison with ESACO [60], QPSO [],1&nd HBMO [72], it is set to 300, 10000, and 5000
respectively. Th@,,4 results obtained by the benchmark algorithms logva in Tables 9-17. The Wilcoxon
signed rank test with 95% confidence interval isdiected for statistical comparison between MCF-AdBd
each benchmark algorithm.

Table 8: Experimental settings used by the compalgatithms and the proposed MCF-ABC model.

Experimental Settings

Approaches [Citation] Benchmark Algorithms MCF-ABC

maxlteration popSize maxlteration | popSize
ABC [34] 100000 [DiIm/2]x2
ACO-ABC [70] 250+250 [Dim/2]x2
2-opt ABC [86] 40 2000
TSPoptBees [9] varied from 1155.83 to 4271/88aried from 99.60 to 177.0 1000 10
BCO [73] 10000 50
HDABC [89] 1000 30
CLK [105] 10000 1
ESACO [60] 300 10 300 10
HBMO [72] 1000 50 5000 10
QPSO [115] 1000 10( 10000 ]10

Table 9: Performance comparison among MCF-ABC ane ABC variants [34].

oliver30 | eil51 | berlin52| st70 pr76|  kroA100 eill01 p225| a280

ABC [RS] 12.77| 18.06 21.64 37.01 36.10 58/61 30.387.08| 118.12
ABC [RSS] 0.00 | 0.50 0.24 1.48 1.58 3.74 522  26.12 42146
ABC [RI] 4.88 8.02 11.29) 14.21 15.04 2147 12/78 .4R7| 38.04
ABC [RIS] 0.03 1.61 0.62 1.59 171 3.35 5.06  22|3236.80
ABC [RRS] 0.33 2.59 3.05 2.67 1.53 2.63 5.80 8|07 1.21
ABC [RRIS] 0.00 | 0.35 0.00 | 0.55 0.62 1.89 3.51 21.6p 33.48
ABC [RRSS] 0.00 | 0.32 0.00 | 0.80 0.64 1.89 3.54 20.98 38.01
ABC [RS, RSS, RRSS 0.00| 0.28 0.04 1.04 0.93 2.1y 3.93 19.83 31§72
ABC [RI, RIS, RRIS] 0.00 | 0.39 0.00 | 0.56 0.45 1.04 2.9¢ 12.41 23.92

MCF-ABC 0.00 0.00 0.00 0.0( 0.0D 0.0 0.00 0,00 0}00
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Table 9 shows the performance comparison among MBE- and nine ABC variants [34]. The
neighbourhood search heuristic(s) used in eaclamais stated in the parentheses. For example, M8}
denotes an ABC variant with Random Swap as thehbeigrhood search heuristic, while ABC [RI, RIS,
RRIS] denotes an ABC variant with Random InsertiBandom Insertion of Subsequence, and Random
Reversing Insertion of Subsequence as the neighbodrsearch heuristics. The description of each thHl
be found in Table 1. Besides that, these nine ARfiants are integrated with a 2-opt local searcitesgy.
The values shown in Table 9 are thg, results obtained by the algorithms when solvincheB8P instance.
The results indicate that MCF-ABC consistently sshall the nine instances to the known optimum, iand
outperforms all nine ABC variants reported in Kieral. [34].

Table 10: Performance comparison among MCF-ABCAD®-ABC [70].

Instances| ACO-ABC| MCF-ABC
oliver30 0.00 0.00
eil51 3.39 0.00
berlin52 0.00 0.00
st70 347 0.00
eil76 231 0.00
pr76 6.39 0.00
kroA100 5.40 0.00
eill01 6.39 0.00]
ch150 221 0.00
tsp225 7.74 0.00

Table 10 shows the performance comparison betwe€f-KWBC and ACO-ABC [70]. In ACO-ABC,
ACO is applied to generate initial solutions for BRnd subsequently, the ABC algorithm utilises RIS,
and RRIS with a random selection method as itshiigrhood search mechanism. The proposed MCF-ABC
model is able to consistently solve all the tertainses to the known optimum, and it outperforms ASEL.
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Table 11: Performance comparison between MCF-ABLCTe&BPoptBees [9].

Instances| TSPoptBegs MCF-ABC Instanges TSPoptBedSF-ABC

att48 0.33 0.00 lin105 0.43 0.00
eil51 0.72 0.00 pri07 0.36 0.00
berlin52 0.32 0.00 pri24 0.84 0.00
st70 0.87 0.00 bier127 0.36 0.09
eil76 1.26 0.00 pri36 2.98 0.00
pr76 0.43 0.00 kroA150 1.51 0.00
kroA100 0.35 0.00] kroB150 1.54 0.00
kroB100 0.66 0.00 rat195 1.69 0.00
kroC100 0.70 0.00 kroA200 0.98 0.00]
kroD100 1.18 0.00 kroB200 2.25 0.00
kroE100 0.57 0.09 tsp225 2.25 0.00
rd100 1.66 0.00 a280 2.02 0.09
eill01 0.77 0.00 lin318 2.34 0.00

Table 11 shows the performance comparison betwe€R-MBC and TSPoptBees [9]. MCF-ABC is able
to obtain bettew,,y as compared with TSPoptBees for all instancesidBsshat, MCF-ABC consistently
solves all the 26 instances to the known optimun8éreplications.
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Table 12: Performance comparison between MCF-ABCB®@O [73].

Instances| BCO| MCF-ABQ Instances| BCO| MCF-ABQ
eill01 0.000 0.000¢ pr299 0.029 0.00d
lin105 0.000 0.000 lin318 0.159 0.000
pri07 0.000 0.000 rd400 0.229 0.00d
grl20 0.078 0.00¢ fla17 0.130 0.000
pri24 0.000 0.00¢ gr431 0.582 0.000

bier127 0.000 0.00d pr439 0.041 0.00d
ch130 0.000 0.00d pcb442 0.423 0.00(
pri36 0.018 0.000 d493 0.354 0.002
gri37 0.000 0.000 att532 0.351 0.007
prld4 0.000 0.000 ali535 0.103 0.00Q
ch150 0.000 0.00d si535 0.034 0.100

kroA150 | 0.000 0.000 pa561 0.948 0.004

kroB150 | 0.000 0.000 u574 0.697 0.000
pri52 0.000 0.00¢ rat575 0.537 0.024
uls9 0.000 0.000 p654 0.048 0.00d
sil75 0.000 0.000 d657 0.445 0.004
rat195 0.198 0.00d gr666 0.553 0.014
d198 0.072 0.000 u724 0.622 0.016

kroA200 | 0.000 0.000 rat783 0.895 0.00d

kroB200 | 0.002 0.000 pr1002 0.853 0.011
gr202 0.027 0.000 si1032 0.000 0.00d
ts225 0.000 0.00d vm1084 | 0.495 0.011
tsp225 0.000] 0.00 pcb1173 | 0.924 0.01
pr226 0.000 0.000 d1291 0.447 0.084
gr229 0.010 0.000 d1655 1.062 0.151
gil262 0.000 0.000 ulgiv 1.356 0.268§
pr264 0.000 0.000 u2152 1.496 0.270
a280 0.000 0.00d pr2392 1.044 0.137

Table 12 shows the performance comparison betweeR-KMBC and BCO [73]. MCF-ABC obtains better
davg than BCO for 33 instances, while BCO outperformE&RYABC in solving si535. MCF-ABC is able to
consistently solve 39 out of 56 instances to thewknoptimum as compared with 22 out of 56 instarmes
BCO.
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Table 13: Performance comparison between MCF-ABCHIDABC [89].

Instances| HDABC| MCF-ABC| Instances| HDABC| MCF-ABC
eill01 0.05 0.00 lin318 0.26 0.00
prio7 0.10 0.00 rd400 0.26 0.00
pri24 0.00 0.00 gra31 1.01 0.00
prid4 0.02 0.00 pr439 0.22 0.00
ch150 0.31 0.00 pcb442 0.15 0.00

kroA150 0.05 0.00 u574 0.37 0.00
pri52 0.00 0.00 rat575 0.75 0.02
rat195 0.61 0.09 u724 0.33 0.02
d198 0.27 0.00 rat783 0.91 0.09

kroA200 0.05 0.00 pr1002 0.71 0.01

kroB200 0.02 0.00 pcb1173 0.77| 0.01
ts225 0.00 0.00 d1291 1.64 0.08
pr226 0.00 0.00 d1655 1.28 0.15
gr229 0.38 0.00 fnl4461 1.30 0.24
gil262 0.00 0.00 pla7397 1.47 0.27
pr264 0.00 0.00 pla85900 2.23 0.77
pr299 0.06 0.00

Table 13 shows the performance comparison betwe@r-KBC and HDABC [89]. MCF-ABC obtains
betterda,g than HDABC for 27 instances. For the other sixédnses, both MCF-ABC and HDABC obtain
0avge0.00. MCF-ABC is able to solve 23 out of 33 ins@sito the known optimum, as compared with 6 out of
33 instances by HDABC.

Table 14: Performance comparison between MCF-ABLGIK [105].

Instances| CLK| MCF-ABC Instancgs  CLK MCF-ABC
pr1002 0.126 0.011 pr2392 0.283 0.137
sil032 0.005 0.00d flI3795 0.732 0.184
vm1084 | 0.038 0.011 fnl4461 0.145 0.289
pcb1173 | 0.041 0.01 115915 0.277 0.435
d1291 0.216] 0.084 pla7397 0.275 0.273
d1655 0.170 0.15] rl11849 0.499 0.5[12
ulgi7z 0.361 0.269 pla8590J0 0.698 0.174
u2152 0.546 0.27(

Table 14 shows the performance comparison betwe€r-MBC and CLK [105]. MCF-ABC and CLK
employ the same implementation of the LK local skatrategy. Comparing with CLK, MCF-ABC obtains
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betterd,,g in solving smaller-scale instancelin<3795). However, CLK outperforms MCF-ABC for larger-
scale instances, i.e. fnl4461, pla7397, rl11844,@a85900.

Table 15: Performance comparison between MCF-ABLCE®ACO [60].

Instances| ESACQ MCF-AB( Instances| ESACQ MCF-AB(
lin105 0.000 0.000 rat783 0.043 0.00(
d198 0.000 0.000 pr1002 0.179 0.007
kroA200 0.000 0.000 fI3795 0.388 0.178
a280 0.004 0.00d fnl4461 0.482 0.215
lin318 0.059 0.000 115915 0.669 0.439
pch442 0.050 0.00( pla7397 0.553 0.233
att532 0.055 0.004 ri11849 0.764 0.479

Table 15 shows the performance comparison betwe@R-MBC and ESACO [60]. Both MCF-ABC and
ESACO are able to solve 1in105, d198 and kroA20heoknown optimum. However, for the TSP instances
with dim>200, MCF-ABC outperforms ESACO. MCF-ABC is able dolve 7 out of 14 instances to the
known optimum within 3000 neighbourhood search afiens as compared with 3 out of 14 instances by
ESACO.

Table 16: Performance comparison between MCF-ABLCQ@RSO [115].

Instances| QPSQ MCF-ABC Instances| QPSQ MCF-ABC
swiss42 0.000 0.00 pr1004 0.000 0.go0
gr229 0.010 0.000 pcbh1173 0.002 0.000
pcb442 0.000] 0.00 d1291] 0.096 0.010
gre66 0.029 0.003 ul817 0.073 0.1B6
dsj1000 0.026 0.003 fI3795 0.025 0.0p2

Table 16 shows the performance comparison betwe€r-MBC and QPSO [115]. Both MCF-ABC and
QPSO employ an LK-based local search. MCF-ABC oisthietter or equal,,q as compared with QPSO in
solving all the ten instances except ul817. MCF-AB@ble to solve 5 out of 10 instances to the kmow
optimum within 20000 neighbourhood search operatesicompared with 3 out of 10 instances by QPSO.
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Table 17: Performance comparison between MCF-ABCHBMO [72].

Instances| HBMO| MCF-ABC| Instances| HBMO| MCF-ABC|
eill01 0.000 0.000¢ pra39 0.000 0.000
lin105 0.000 0.000 pcb442, 0.0q90 0.0p0
pri07 0.000 0.000 d493 0.040 0.0p0
pri24 0.000 0.00¢ rat575 0.000 0.0p7

bier127 0.000 0.00d p654 0.000 0.0po
ch130 0.000 0.00d d657 0.000 0.0p2
pri36 0.000 0.000 rat783 0.000 0.0p0
pri44 0.000 0.000 dsj100( 0.012 0.004
ch150 0.000 0.00d pri002 0.001 0.000
kroA150 0.000 0.000¢ vm1084 0.005 0.0p7
pri52 0.000 0.000 pcb1173 0.003 0.000
rat195 0.000 0.00d d1291 0.000 0.042
d198 0.000 0.000 d1655 0.122 0.0p8
kroA200 0.000 0.000 ulg817 0.028 0.1y2

kroB200 0.000 0.000 u2152 0.390 0.140
ts225 0.000 0.00d pr2392 0.028 0.0R7
pr226 0.000 0.00¢ fI3795 0.370 0.041
gil262 0.000 0.000 fnl4461 0.350 0.121
pr264 0.000 0.00¢ 115915 0.012 0.186
a280 0.000 0.00d pla739Y 0.009 0.132
pr299 0.000 0.000 rl11849 0.098 0.2)3
rd400 0.000 0.000 pla85900 0.210 0.447
fla17 0.000 0.000]

Table 17 shows the performance comparison betwe@k-MBC and HBMO [72]. The local search
strategy employed by HBMO is known as ENS. ENSrislar to the LK local search because they both use
multiple neighbourhood structures. For the instangith smaller dimensions (i.dim<500), both MCF-ABC
and HBMO are able to yield the known optimum witBi@00 neighbourhood search operations. MCF-ABC
outperforms HBMO in solving several medium-scalstamces, i.e. u2152, pr2392, fI3795, and fnl4461.
However, for larger-scale instances, i.e. rI591&7897, rl11849, and pla85900, HBMO yields betigy as
compared with MCF-ABC.

To statistically compare the overall performancéM@F-ABC and other algorithms, the Wilcoxon signed
rank test with 95% confidence interval is employ&the results of the Wilcoxon signed ranks test are
summarised in Table 18. Table 18 indicates thatetban the 95% confidence interval, the proposedMC
ABC model significantly outperforms 15 algorithmeth W<W¢,; y and R>R’. Besides, it is comparable with
CLK, QPSO and HBMOW>Weii n)-
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Table 18: The Wilcoxon signed ranked test for thiparison of MCF-ABC and state-of-the-art algorighm

?ﬁ?ﬁig@n\z ) Citation | N | R R | W | Wgin | Significant Difference
ABC [RS] 9| 45| 0| o© 5| yes
ABC [RSS] 8| 36| O] 0 3 yes
ABC [RI] 9| 45| 0| O 5| yes
ABC [RIS] 9| 45| 0| o© 5 yes
ABC [RR] [34] 9| 45| 0| O 5| vyes
ABC [RRIS] 7| 28| 0| o 2| yes
ABC [RRSS] 7| 28/ 0 O 2 yes
ABC [RS, RSS, RRSS g 36 D 0 3 yes
ABC [RI, RIS, RRIS] 7| 28 o O 7 vyes
ACO-ABC [70] 8| 36| 0| O 3| yes
2-opt ABC [86] 8 36 0 0 3 vyes
TSPoptBees [9] 2§ 351 D 0 98 yes
BCO [73] 34| 587| 8 8 187 yes
HDABC [89] 27| 378 0| O 107 yes
CLK [105] 15| 84| 36| 36 23 no
ESACO [60] 11| 66/ 0 10 yes
QPSO [115] 71 220§ 6 2 no
HBMO [72] 17 71| 82| 71 34 no

5. Conclusions

The Artificial Bee Colony (ABC) algorithm is a swarsintelligence-based model for solving various
optimisation problems. One of the crucial composeot ABC is the neighbourhood search, which is
performed by the employed and onlooker bees. Wh&C As used to solve combinatorial discrete
optimisation problems, single or multiple problepesific perturbative heuristics are adopted as the
neighbourhood search mechanism of the employed amdoker bees. When there are multiple
neighbourhood search heuristics, the selectiohade heuristics has a significant impact on théopmaance
of the ABC optimisation model. In this study, wevbgroposed the use of a hyper-heuristic methaaeha
Modified Choice Function (MCF), to guide the selecatof the neighbourhood search heuristics in ABEn
low-level heuristics (LLHs) have been adopted ie firoposed MCF-ABC model. Besides that, the Lin-
Kernighan (LK) local search strategy is incorpodatgdo MCF-ABC to further enhance its usefulness.

The proposed MCF-ABC model has been evaluated 84tf SP instances. The experimental results show
that MCF-ABC significantly outperforms MCF-ABC(4yvhich uses four LLHs with basic operations. This
indicates that a variety of LLHs brings advantagethe search process. In addition, MCF-ABC siatsy
outperforms Random-ABC, which utilises a random L&é#lection strategy. The comparison studies indicat
that MCF-ABC is competitive among the state-of-#nealgorithms.
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