
Accepted Article

© 2021. IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

DOI: 10.1109/TAAI54685.2021.00019

Please cite this article as:

C. G. Tan, S. S. Choong, and L. P. Wong, “A machine-learning-based approach for parameter control in bee

colony optimization for traveling salesman problem,” in Proceedings of the 2021 International Conference on

Technologies and Applications of Artificial Intelligence (TAAI 2021), IEEE, 2021, pp. 54–59.

A Machine-Learning-based Approach for Parameter

Control in Bee Colony Optimization for Traveling

Salesman Problem

Chong Gee Tan

School of Computer Sciences

Universiti Sains Malaysia

Penang, Malaysia

chonggee@student.usm.my

Shin Siang Choong

School of Computer Sciences

Universiti Sains Malaysia

Penang, Malaysia

css15_com047@student.usm.my

Li-Pei Wong*

School of Computer Sciences

Universiti Sains Malaysia

Penang, Malaysia

lpwong@usm.my

* Corresponding author

Abstract— Metaheuristics are a set of algorithms

which is capable of solving Combinatorial Optimization

Problems (COPs). When a metaheuristic is used to solve

a COP, one of the major aspects is to determine an

appropriate parameter setting. Poor practice of

determining parameter values may lead to inability to

find optimal solutions or getting invalid conclusions from

the experimental results. This research proposes a

machine-learning-based parameter control mechanism

for a metaheuristic, i.e. the Bee Colony Optimization

(BCO) algorithm. The proposed mechanism consists of

three main phases: Data Collection, Model Training, and

Deployment. In order to examine the performance of the

BCO algorithm with the parameter control mechanism, a

set of 16 TSP instances is used as test bed. The

experimental results show that it is significantly better

than the BCO implementation using the parameter values

that are determined via a manual tuning process. The

proposed parameter control mechanism overcomes the

shortcomings of manual parameter tuning and

dynamically adjust the parameter values throughout the

BCO optimization process.

Keywords—metaheuristic, parameter tuning, supervised

learning, random forest regression, combinatorial

optimization, swarm intelligence.

I. INTRODUCTION

A metaheuristic is a higher-level problem independent
procedure or algorithm that is able to find a near optimal
solution for Combinatorial Optimization Problem (COP). The
solution found by a metaheuristic is often reasonably good,
even when the metaheuristic operates with incomplete
information or limited computational capacity. Metaheuristics
can be classified as single-solution-based (e.g. Simulated
Annealing (SA) [1, 2] and Tabu Search (TS)) [3, 4], or
population-based (e.g. Genetic Algorithm (GA) [5, 6], Ant
Colony Optimization (ACO) [7, 8], Artificial Bee Colony
(ABC) algorithm [9-12], and Bee Colony Optimization
(BCO) [13-15]). Metaheuristics are commonly used to solve
different COPs such as Traveling Salesman Problem (TSP),
Job Shop Scheduling Problem (JSSP), Quadratic Assignment
Problem (QAP), and Vehicle Routing Problem (VRP).

The success of a metaheuristic in solving a COP highly
depends on a balance between exploration and exploitation
mechanisms during the search for solutions with acceptable
quality. Metaheuristics owns a set of parameters needed to be
tuned in order to strike a balance in terms of exploration versus
exploitation. There are two common parameter setting
methods in metaheuristics: parameter tuning and parameter
control. Eiben and Smith [16] define parameter tuning as
finding good parameter values before the execution of
metaheuristic which are then kept fixed throughout an
execution. On the other hand, parameter control dynamically
changes parameter values in a metaheuristic based on instant
feedbacks during the solution searching process.

https://doi.org/10.1109/TAAI54685.2021.00019

Accepted Article

Generally, when a metaheuristic is applied to solve a
problem, the default parameter settings as recommended in
the literature are utilized. As mentioned by Birattari and
Kacprzyk [17], most researchers utilize a trial-and-error
parameter tuning approach to determine the parameters of a
metaheuristic. Besides trial-and-error approach, some
scientific methods such as one factor at a time (OFAT) [18],
F-Race [19] and design of experiment related methods [20-22]
can also be utilized to tune the parameters. There are four
major drawbacks accompanied with these parameter tuning
approaches, i.e. time-consuming, labour intensive, high skill
and knowledge requirements, and high risks to invalidate any
result and conclusion drawn from the experiment. Very often,
when the problem instance changes, parameters needed to be
tuned from scratch again to better suit the new problem. In
addition, these drawbacks of parameter tuning are especially
apparent in design of experiment related approaches such as
factorial design [13]. Assuming that each parameter is
discretized and restricted to only m possible values, if there
are n parameters, there will be mn combinations of parameter
values needed to be tested. Therefore, parameter tuning itself
can also be considered as a combinatorial optimization
problem [23].

A population-based metaheuristic, namely: the Bee
Colony Optimization (BCO) algorithm was proposed to solve
various types of COPSs including TSP [13]. The BCO
algorithm is inspired by the foraging behavior of bees. Similar
to other metaheuristics, BCO also needs a suitable parameters
configuration to yield good performance. This paper aims to
address the limitations of the manual parameter tuning in
BCO. Specifically, a Machine Learning (ML) based
parameter control method which dynamically adapts to the
feedbacks from solution instances during execution process is
proposed as an alternative to the manual tuning method.

The organization of the paper is as follows. Section I
introduces the general ideas and the research problems as well
as the research objectives. Section II introduces the TSP.
Section III reviews the related literatures. Section IV
illustrates and describes the mechanisms of the proposed ML-
based parameter control method for BCO [13]. Section V
presents the experimental results and findings. Finally,
Section VI ends the paper with conclusions drawn from
experiment results and highlights the future work.

II. TRAVELING SALESMAN PROBLEM

As mentioned in Section I, this paper proposes a machine-
learning-based parameter control for the BCO algorithm. In
order to validate the usefulness of the proposed parameter
control mechanism, a combinatorial optimization problem,
namely: TSP, is selected as the test bed. This section briefly
describes TSP.

TSP is an NP-hard COP [24].Suppose that a number of
nodes are distributed in some geometric region,. TSP can be
modelled as an undirected weighted graph, G = (E, V), in
which E is a set of edges (E = {(a, b) : a, b ϵ V }) and V is a
set of n nodes (V = {v1,v2, . . . ,vn}). When solving a TSP, a
distance matrix corresponding to E, D = {da,b}, in which da,b
represent the distance between city a and city b is given. Let
∏ represents all feasible permutations of set V. An optimal
TSP solution is a permutation π ϵ ∏, which has the shortest
possible round trip distance, as shown in Eq. (1),

𝐶𝑇𝑆𝑃(𝜋 ∈ ∏) = ∑ [𝑑𝜋(𝑖),𝜋(𝑖+1)] + 𝑑𝜋(𝑛),𝜋(1)
𝑛−1
𝑖=1 ()

where 𝜋(𝑖) ∈ 𝑉 indicates the i-th element in π.

III. RELATED WORK

This section presents studies related to the BCO algorithm
and ML-based parameter control/tuning methods. They are
described in Section III.A and Section III.B respectively.

A. Bee Colony Optimization

Bees are insects with well-organized interactive
behaviour. In a bee colony, each bee is assigned with different
tasks, including breeding, foraging, and building hive. In order
to maintain a seamless food supply chain, foraging is a one of
the very crucial tasks. In a bee colony, bees explore different
spots looking for new food sources. When a bee discover a
new food source, it performs waggle dance as an interactive
medium to inform others about the amount of nectar, distance,
and direction of the new food source [25]. As a result, a
number of bees which observe the dance are attracted towards
the newly discovered food source. A number of algorithms
have been inspired by this foraging behaviour for solving a
large variety of COPs.

The initial BCO model [26] modelled the foraging
behaviour of bees as its solution construction mechanism by
conducting a stepwise state transition rule which comprises
two components: heuristic distance and arc fitness. A bee
begins its foraging process with probabilistically selecting a
waggle dance as a preferred path. When the bee constructs a
solution, the node which followed the choice of the preferred
path is assigned with greater arc fitness and therefore it is more
likely to be picked as the next node to be visited. On the other
hand, nearer nodes from the current node is more likely to be
chosen due to the impact of the heuristic distance component.
In addition, the waggle dance duration is monitored using a
linear function which consists of three parameters: individual
profitability score of a bee, average profitability score of the
bee colony, and the scaling factor [26].

This BCO algorithm is then enriched with a local search
[27], a Fragmentation State Transition Rule (FSTR) [28], a
fuzzy-based dance mechanism [15] and pruning strategies
[29-31]. The developed BCO algorithm is a generic
framework which is able to solve multiple COPs e.g.
symmetric TSP [27, 29], asymmetric TSP [32], JSSP [14, 33,
34], QAP [13], and sequential ordering problem [35]. The
pseudocode of the BCO algorithm is shown in Algorithm I.

ALGORITHM I. BEE COLONY OPTIMIZATION (BCO) ALGORITHM

Procedure BCO
initialization()

while stop criteria are not fulfilled do

 for all bees in a population do
observeDance()

constructSolutionByFSTR()
performLocalSearch()

performDance()

 end while

end while

end Procedure BCO

The BCO algorithm described in Algorithm I is equipped

with a set of user defined parameters as follows. λ, α, and β
are the three parameters defined in the bees’ path construction
mechanism. K is a scaling parameter that controls the

Accepted Article

magnitude of a dance duration. NBee denotes the number of
bees (i.e. population size) being used in the BCO algorithm. ϖ
denotes the capacity of past memory associated with each bee.
The ML-based parameter control mechanism proposed in the
paper focuses on the parameters defined in the bees’ path
construction mechanism (i.e. λ and β). More details are
presented in Section IV.

B. ML-based Parameter Tuning/Control Methods

There are a large variety of parameter tuning and control
methods in the literature. In this section, some existing
metaheuristic parameters tuning and control methods based on
ML are highlighted. A summary is provided in Table I.

TABLE I. PREVIOUS WORK ON ML-BASED PARAMETER TUNING AND

PARAMETER CONTROL FOR METAHEURISTICS

Approaches ML model

used

Metaheuristic(s)

Parameter

Tuning

Silc, et al.

[36]

Decision Tree Differential Ant-Stigmergy

Algorithm (DASA)

Aoun, et al.

[37]

Hidden Markov

Model

Particle Swarm Optimization

(PSO)

Pereira, et al.

[38]

Case-based

Reasoning

Tabu Search (TS), Genetic

Algorithm (GA), Simulated

Annealing (SA), Ant Colony
Optimization (ACO), Particle

Swarm Optimization (PSO)

Parameter

Control

Lessmann, et

al. [39]

Non-linear

Regression

Particle Swarm Optimization

(PSO)

For parameter tuning, Silc, et al. [36] tested 5000 different

parameter settings of the Differential Ant-Stigmergy
Algorithm (DASA) and modelled the relationship between the
parameter settings and performance using a decision tree.
Aoun, et al. [37] utilized a Hidden Markov Model to evaluate
the performance of each tested parameter configuration of
Particle Swarm Optimization (PSO) over multiple test
instances. Pereira, et al. [38] employed a case-based reasoning
model. For a given new problem (case), the best metaheuristic
and respective parameters that have been successfully used to
solve similar cases are retrieved from the case base.

Although parameter tuning approaches are able to
determine a set of parameter setting for a metaheuristic, Eiben
and Smith [16] suggest that there are no ‘one size fits all’
approach in setting parameter values because metaheuristics
are comprised of dynamic and adaptive processes. Different
stages of the optimization process require different balance of
exploration and exploitation, and thus might need different
choices of parameters to efficiently navigate through the
search space [40, 41]. Therefore, relying only on parameter
tuning strategy is insufficient for setting up the optimal search
environment. In a recent work by Lessmann, et al. [39], an
ML-based parameter control approach was proposed.
Lessmann, et al. [39] suggested that the features of a solution
instance are correlated to the parameter values and hence a
number of models that fit the features of a solution instance to
the parameter values are developed using several ML
techniques, i.e. Support Vector Machine (SVM), Multiple
Linear Regression (MLR), and Random Forest (RF). These
techniques are evaluated using a water supply network
planning problem which the decision variables are continuous
in nature. The results conclude that non-linear relationship
exists between features of solution instances and suitable
parameter values.

Inspired by Lessmann, et al. [39], in this paper, the use of
a non-linear regression approach, namely Random Forest in
controlling BCO parameters is investigated. There are two
major differences as compared with Lessmann, et al. [39] as
follows. First, in terms of the metaheuristic optimization
algorithm, Lessmann et al. control the PSO parameters using
a set of ML techniques whereas the proposed method is used
to control the BCO parameters. Second, in terms of the
optimization datasets used in performance evaluation,
Lessmann et al. apply the parameter control mechanism on a
set of continuous optimization problems (i.e. water supply
network planning problem) whereas the proposed method is
tested using a number of TSP benchmark instances which
involve a discrete search space. The following section
describes the proposed ML-based parameter control method
for BCO.

IV. PROPOSED WORK

As mentioned in Section III.A, the bee foraging behaviour
is modelled as the solution construction mechanism of the
BCO algorithm [26]. Before a bee starts the solution
construction process, it probabilistically select a dance
performed by others to determine a preferred path, denoted as
θ. θ denotes a tour that was previously explored by another
bee. By referring to θ as guidance, the bees iteratively
construct solutions by traveling from one city to another city
according to a state transition probability, Pij,t, which
represents the probability to travel from node i to node j at
time t. Pij,t is a function consists of two elements, namely:
heuristic distance dij, and arc fitness ρij,t of the connecting edge
between the two cities, as shown in Eq. (2).

𝑃𝑖𝑗,𝑡 =
[𝜌𝑖𝑗,𝑡]

𝛼
∙ [

1

𝑑𝑖𝑗
]

𝛽

∑ ([𝜌𝑖𝑗,𝑡]
𝛼
∙ [

1

𝑑𝑖𝑗
]

𝛽

)𝑗∈𝐴𝑖,𝑡

 ()

where Ai,t represents a set of cities which are yet to be selected
at time t, α is a binary variable that turns on or off the influence
of arc fitness, β controls the significance level of heuristic
distance, and ρij,t is defined in Equation (3):

𝜌𝑖𝑗,𝑡 =

{

 𝜆, 𝑗 ∈ 𝐺𝑖,𝑡 , |𝐴𝑖,𝑡| > 1

1− 𝜆|𝐴𝑖,𝑡∩𝐺𝑖,𝑡|

|𝐴𝑖,𝑡−𝐺𝑖,𝑡|
, 𝑗 ∉ 𝐺𝑖,𝑡, |𝐴𝑖,𝑡| > 1

1, |𝐴𝑖,𝑡| > 1 }

∀𝑗𝜖𝐴𝑖,𝑡 , 0 ≤ 𝜆 ≤ 1 ()

Gi,t represents the city which the bee prefers to move from
city i at time t as recommended by θ and λ is a parameter
determining the likelihood of selecting the city recommended
by θ. The first two conditions indicate that the edge
recommended by θ (if there is one) is given a likelihood score
of λ, while equal likelihood score is assigned to the remaining
edges. Based on the third condition, when there is only one
node left in Ai,t, its likelihood score is set to 1.

This stepwise state transition rule allows bees to add one
city in a given step until a complete TSP solution is
constructed. This solution construction mechanism is a
computationally expensive and it is not scalable when solving
a TSP with large dimension. The stepwise state transition rule
was modified in [28] such that it is less expensive in terms of
computational time. In the modified solution construction
mechanism, i.e. fragmentation state transition rule, a bee could
add a batch/fragment of nodes in each step during the solution
construction process, instead of adding only one node in each
step.

Accepted Article

ALGORITHM II. BEE COLONY OPTIMIZATION (BCO) ALGORITHM

1 Procedure BCO-Control
2 B = initialization()

3 while iteration < BCMAX do

4 for bi B do

5 θ = bi.observeDance()

6 if iteration < interval

7 λ, β = randomizeParam()
8 else

9 λ, β = model.predict(θ)

10 end if

11 bi.constructSolutionByFSTR(λ, β, θ)

12 bi.performLocalSearch()

13 if iteration ≠ 0 and Cost(bi’) < Cost(θ)

14 D (λ, β, θ)

15 end if

16 if iteration % 1000 == 0
17 model = RF.train(D)

18 D =

19 end if

20 bi.performWaggleDance()
21 Conduct dance elitism

22 Reset memory if stcuked in local optimum

23 end for
24 iteration++

25 end while

26 end Procedure BCO-Control

In this paper, it is aimed to control the parameters of the

fragmentation state transition rule (i.e. λ and β) in the BCO
algorithm. Algorithm II shows the pseudocode of BCO
integrated with the proposed parameter control mechanism
(denoted as BCO-Control).

The proposed machine-learning-based parameter control
method consists of three main phases: Data Collection, Model
Training, and Deployment. During the Data Collection phase,
the training data is collected during the execution of the BCO
algorithm. In the initial period of the execution process, the
two parameters λ and β are randomized and sampled within
specified range: 0.0 ≤ λ ≤ 1.0 and 0.0 ≤ β ≤ 10.0 (Line 6-7 in
Algorithm II). The purpose of employing randomized
parameters is to sample various parameter values and identify
good values with regards of different situations of the BCO
algorithm execution process. When a suitable parameter
setting for a situation is identified (e.g. a bee improves its
preferred path with the parameter setting), the preferred path
and its corresponding parameter values are appended to a set
D, which is a training set for the subsequent Model Training
phase (Line 13-15 in Algorithm II). The accumulated training
data (i.e. set D) are periodically sent for regression model
training to predict suitable parameter values. In this study, the
Model Training is performed after every 1000 iterations (Line
16-19 in Algorithm II).

TABLE II. A FEATURE REPRESENTATION EXAMPLE

Solutions AB AC AD BC BD CD

ACBDA 0 1 1 1 1 0

ADCBA 1 0 1 1 0 1

To ensure that the training time is affordable, the following

pre-processing steps are performed to keep the size of the
dataset (i.e. the number of columns and rows) in an acceptable
range. Specifically, the top N (i.e. N = 25) most frequent edges
presented in the collected dataset will be captured and used as
Boolean features to represent bee solutions. When a solution
contains/does not contain an edge, E, its value in the
corresponding column representing E is set at one/zero.

Consider a TSP with four cities, i.e. A, B, C, and D, Table II
illustrates the feature representation of two solutions with N =
6. The main purpose of using such feature extraction approach
is to capture the edge information of a TSP solution while
maintaining a reasonable number of columns. Moreover, a
deduplication process over the rows is performed on the
collected dataset. For every row with the same features, only
the one with lowest parameter value will be kept for
subsequent model training. The rationale of introducing a bias
towards the lowest parameter values is the assumption of
parameter setting that is able to improve the solution with least
influence of the arc fitness and heuristic distance, is the most
suitable parameter setting.

In the proposed ML-based parameter control method, the
Random Forest algorithm [42] is employed to model the
relationship between the solution instance features and
parameters. Random Forest is a decision-tree-based ensemble
model. The pseudocode of the Random Forest algorithm is
presented in Algorithm III [42]. In this study, the default
parameter setting of Random Forest in Weka [43] is utilized.

ALGORITHM III. RANDOM FOREST

procedure randomForest

 forest =

 for i 1, …, ntree do

 di = A bootstrap sample from the training dataset

 treei = treeConstruction(di)

 forest = forest treei

 end for

 return forest

end procedure

procedure treeConstruction(d)

 for each node in tree do

 Split based on the best feature in a subset of all features

 end for

 return tree

end procedure

This ensemble model is chosen because a previous study
[39] has proved that Random Forest is able to map the non-
linear relationships in the dataset for parameter control task.
In the model training process, 70% of the dataset is employed
for training, while 30% is utilized for validation. The model
performance is validated using two main indicators:
correlation coefficient which tells how many percent of the
data variance is captured by the model, and root mean squared
error which is the square root of total deviations between
predicted values with the validation dataset. The set D is
cleared after each Model Training phase.

The Deployment phase follows the Model Training phase.
In the Deployment phase, the values of λ and β used by each
bee are guided by the predictions from the trained regression
models (Line 9 in Algorithm II). Simultaneously, another
cycle of Data Collection phase is started to collect new
datasets for the subsequent Model Training phase. The BCO
algorithm and its machine-learning-based parameter control
mechanism repeat until either the algorithm has found the
known optimal value or reached the predefined iteration limit.

Accepted Article

V. EXPERIMENTAL RESULTS

This section presents the empirical results of this study. It
includes the experimental setup, result indicator and the
experimental results.

A. Experiment Setup

In order to assess the effectiveness and performance of the
machine-learning-based parameter control for the BCO
algorithm, a total of 16 symmetric TSP instances are chosen
from TSPLIB [44] with their dimension ranging from 136 to
1291 cities. The dimension of the problem instance is reflected
in the numerical figure of the instance name, e.g. PR136 is a
136-city TSP; D1291 is a 1291-city TSP.

The results were benchmarked against the work by Wong
[13] (denoted as BCO-Fixed), which uses fixed parameter
values determined by a manual tuning process. The parameter
used by BCO-Fixed is as follows: α = 1, β = 1, λ = 0.1, NBee =
50, and BCMax = 10000.

B. Results Indicators

NetBeans IDE version 8.2 and Weka 3.8.3 were used to
implement the BCO algorithm and its machine-learning-based
parameter control mechanism. Weka 3.8.3 supports all ML-
related functions, i.e. the Random Forest implementation. The
experiments were conducted on a workstation running Ubuntu
operating system with Intel CoreTM i7-3930K 3.20 GHz hexa-
core processor and 16 GB memory.

There are two main indicators to evaluate the performance
of BCO solving TSP problems: percentage deviation from
optimum tour length δ (measured in %), and computational
time to achieve the best tour length possible, T (measured in
seconds). The formula for the calculation of δ is as shown in
Eq. (4):

𝛿 =
µ𝑪 − 𝐶

∗

𝐶∗
∗ 100% ()

C* is the known optimum for the problem instance, i.e. the
shortest possible tour length found by the research community
so far. Ten replications are conducted for the experiment. A
set of results C = [c1, c2, …, c10] and T = [t1, t2, …, t10] are
recorded, in which C is a set of generated shortest tour lengths
while T is the time taken to achieve the corresponding shortest
tour lengths. From the results, the average of set C and T are
calculated and denoted as µC and µT respectively. The δavg
indicator denotes the percentage difference of the best result
from the known optimum on average.

C. Experimental Results

Table III shows the performance comparison between
BCO-Fixed and BCO-Control. Table III reports the instance
names, the known optimal tour length, average best tour
length obtained by the algorithms (µC), deviation of µC from
known optimum, and average time taken to obtain C (µT).

Based on Table III, the average δavg scores for BCO-Fixed
and BCO-Control are 0.437% and 0.363%, respectively. The
largest δavg scores for BCO-Fixed and BCO-Control (i.e.
0.964% and 0.862% respectively) are both obtained when
solving the PCB1173 instance.

BCO-fixed solves the 16 TSP instances to 0.437% from
the known optimum within 1498.6 seconds (≈25 minutes). On
the other hand, BCO-Control solves the instances to 0.363%
from the known optimum within 1358.3 seconds (≈22.6

minutes). In other words, BCO-Control averagely obtains
16.9% better solutions with 9.4% (or 2.4 minutes) shorter
computational time as compared with BCO-Fixed.

TABLE III. PERFORMANCE COMPARISON BETWEEN BCO-FIXED AND

BCO-CONTROL ALGORITHMS BASED ON 16 TSP BENCHMARK PROBLEMS

TSP

Instances

Known

Optimum
BCO-Fixed BCO-Control

 µC δavg, % µT,

seconds

µC δavg,

%

µT,

seconds

PR136 96772 96857.2 0.088 92.8 96794.0 0.024 105.9

LIN318 42029 42104.3 0.179 545.0 42081.4 0.125 714.8

RD400 15281 15322.9 0.274 592.7 15313.9 0.215 780.5

GR431 171414 172267.3 0.498 736.5 172207.4 0.463 619.5

PR439 107217 107301.9 0.079 983.7 107285.3 0.064 729.7

D493 35002 35188.2 0.532 1316.1 35171.0 0.483 1283.6

ATT532 27686 27790.3 0.377 1412.0 27783.7 0.353 842.4

ALI535 202339 202663.0 0.160 1339.3 202585.7 0.122 1032.2
U574 36905 37167.4 0.711 1297.8 37091.0 0.504 1435.1

D657 48912 49221.5 0.633 1529.5 49210.6 0.610 1083.3

GR666 294358 296134 0.603 1679.3 295821.8 0.497 2017.8

U724 41910 42212.7 0.722 1207.1 42177.7 0.639 2030.1

SI1032 92650 92650.0 0.000 463.0 92650.0 0.000 622.7

VM1084 239297 241027.1 0.723 3992.5 240526.5 0.514 2226.5

PCB1173 56892 57440.3 0.964 3590.9 57382.6 0.862 3027.3

D1291 50801 51026.1 0.443 3199.3 50969.6 0.332 3181.6

Average: 0.437 1498.6 0.363 1358.3

To compare the overall performance of BCO-Fixed and

BCO-Control statistically, the Wilcoxon signed-rank test with
a significance level of 0.05 is utilized. The µT values of all
problem instances are scaled (i.e. all the values are between
zero and one) such that the priorities of all instances are
standardized. The differences between each pair of
performance indicators (i.e. δavg and normalized μT) achieved
by BCO-Fixed and BCO-Control are computed. After
excluding those instances with zero differences, these
differences are ranked in ascending order. In Table IV, N
represents the effective sample size (i.e. number of TSP
instances) after removing those with zero differences, R-

represents a summation of the ranks for the TSP instances
where BCO-Control underperforms BCO-Fixed, and R+
represents those for the TSP instances where BCO-Control are
better than BCO-Fixed. A critical value, Wcri,N acquired from
a statistical table is employed to compare with the test statistic,
W [45]. W > WCri,N suggest that no statistical difference
between the performance of BCO-Fixed and BCO-Control is
observed, while W ≤ WCri,N implies a statistical difference
between the performance of BCO-Fixed and BCO-Control.
According to Table IV, BCO-Control has significantly better
δavg scores as compared with BCO-Fixed (W ≤ WCri,N and R+ >
R-). The zero R- value implies that BCO-Control performs
better than BCO-Fixed in terms of δavg in solving all 16 TSP
instances. In terms of µT, BCO-Control and BCO-Fixed are on
par with each other (W > WCri,N). In other words, the proposed
ML-based parameter control method achieves better solutions
while maintains similar computational time.

TABLE IV. RESULTS OF THE WILCOXON SIGNED-RANK TEST

 δavg
Normalized

µT

N 15 16

R+ 120 77

R- 0 59
W 0 59

WCri,N 19 23

Significant yes no

Accepted Article

VI. CONCLUSIONS

In this study, a machine-learning-based parameter control
mechanism is integrated as part of the BCO algorithm (BCO-
Control). BCO-Control has been tested on a set of 16 TSP
benchmark instances. The empirical results suggest that BCO-
Control has successfully controlled the two BCO parameters
(i.e. λ and β) and guides the BCO algorithm to find better TSP
tour length compared to the BCO-Fixed which uses
parameters with fixed values. The results coincide with the
findings by Lessmann, et al. [39] and proves that such
machine-learning-based parameter control implementation is
applicable to BCO for solving a discrete COP, i.e. TSP. The
proposed machine-learning-based parameter control
mechanism is able to address the drawbacks of manual
parameter tuning and adapt different parameter values at
different stages throughout the optimization process.

For future work, application of similar approach to other
metaheuristics can be investigated. As a TSP solution can be
represented using a graph, the use of graph embedding [46] in
the feature extraction process can be explored. Also,
application of Reinforcement Learning [47] and AutoML [48]
for parameter control in metaheuristic can be studied.

ACKOWNLEDGEMENT

This work was supported by Tabung Persidangan Luar
Negara (TPLN). The authors would like to thank the
Universiti Sains Malaysia for the awarded grant.

REFERENCES

[1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
"Optimization by simulated annealing," Science, vol.
220, pp. 671-680, 1983.

[2] H. Wang, K. Li, and W. Pedrycz, "A routing algorithm
based on simulated annealing algorithm for maximising
wireless sensor networks lifetime with a sink node,"
International Journal of Bio-Inspired Computation, vol.
15, pp. 264-275, 2020.

[3] Z. Wei and J.-K. Hao, "Multistart solution-based tabu
search for the Set-Union Knapsack Problem," Applied
Soft Computing, vol. 105, p. 107260, 2021.

[4] F. Glover and M. Laguna, "Tabu search," in Handbook
of Combinatorial Optimization, D.-Z. D. P. M. Pardalos,
Ed., ed: Springer, 1998, pp. 2093-2229.

[5] Ü. Çavuşoğlu and A. H. Kökçam, "A new approach to
design S-box generation algorithm based on genetic
algorithm," International Journal of Bio-Inspired
Computation, vol. 17, pp. 52-62, 2021.

[6] S. Mirjalili, "Genetic algorithm," in Evolutionary
Algorithms and Neural Networks, ed: Springer, 2019, pp.
43-55.

[7] M. Dorigo, M. Birattari, and T. Stutzle, "Ant colony
optimization," IEEE computational intelligence
magazine, vol. 1, pp. 28-39, 2006.

[8] W. Deng, J. Xu, Y. Song, and H. Zhao, "An effective
improved co-evolution ant colony optimisation
algorithm with multi-strategies and its application,"
International Journal of Bio-Inspired Computation, vol.
16, pp. 158-170, 2020.

[9] D. Karaboga and B. Basturk, "On the performance of
artificial bee colony (ABC) algorithm," Applied soft
computing, vol. 8, pp. 687-697, 2008.

[10] S. S. Choong and L. P. Wong, "A Hyper-heuristic based
Artificial Bee Colony Optimization for the Traveling
Salesman Problem," in Big Data Summit 2: HPC and AI
Empowering Data Analytics (co-locate with PRAGMA
35 Meeting), 2018.

[11] M. Yazdani and N. J. Navimipour, "Join query
optimisation in the distributed databases using a hybrid
harmony search and artificial bee colony algorithm,"
International Journal of Bio-Inspired Computation, vol.
17, pp. 189-198, 2021.

[12] S. S. Choong, L. P. Wong, and C. P. Lim, "An artificial
bee colony algorithm with a modified choice function for
the Traveling Salesman Problem," in 2017 IEEE
International Conference on Systems, Man, and
Cybernetics (SMC), 2017, pp. 357-362.

[13] L. P. Wong, "A generic bee colony optimization
framework for combinatorial optimization problems,"
PhD thesis, School of Computer Engineering, Nanyang
Technological University, 2012.

[14] W. M. Choo, L. P. Wong, and A. T. Khader, "A modified
bee colony optimization with local search approach for
job shop scheduling problems relevant to bottleneck
machines," International Journal of Advanced Soft
Computing Applications, vol. 8, pp. 52-78, 2016.

[15] S. S. Choong, L. P. Wong, and C. P. Lim, "A dynamic
fuzzy-based dance mechanism for the bee colony
optimization algorithm," Computational Intelligence,
vol. 34, pp. 999-1024, 2018.

[16] A. E. Eiben and J. E. Smith, Introduction to evolutionary
computing vol. 53: Springer, 2015.

[17] M. Birattari and J. Kacprzyk, Tuning metaheuristics: A
machine learning perspective, second edition ed. vol.
197: Springer Publishing Company, Incorporated, 2009.

[18] B. Akay and D. Karaboga, "Parameter Tuning for the
Artificial Bee Colony Algorithm," in International
Conference on Computational Collective Intelligence,
Berlin, Heidelberg, 2009, pp. 608-619.

[19] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, "F-
Race and Iterated F-Race: An Overview," in
Experimental Methods for the Analysis of Optimization
Algorithms, T. Bartz-Beielstein, M. Chiarandini, L.
Paquete, and M. Preuss, Eds., ed Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 311-336.

[20] M. Fallahi, S. Amiri, and M. Yaghini, "A parameter
tuning methodology for metaheuristics based on design
of experiments," International Journal of Engineering
and Technology Sciences, vol. 2, pp. 497-521, 2014.

[21] F. Dobslaw, "A parameter tuning framework for
metaheuristics based on design of experiments and
artificial neural networks," in International Conference
on Computer Mathematics and Natural Computing,
2010.

[22] S. S. Choong, L. P. Wong, and C. P. Lim, "An artificial
bee colony algorithm with a modified choice function for
the traveling salesman problem," Swarm and
Evolutionary Computation, vol. 44, pp. 622-635, 2019.

[23] X.-S. Yang, S. Deb, M. Loomes, and M. Karamanoglu,
"A framework for self-tuning optimization algorithm,"
Neural Computing and Applications, vol. 23, pp. 2051-
2057, 2013.

[24] M. Jünger, G. Reinelt, and G. Rinaldi, "The traveling
salesman problem," Handbooks in operations research
and management science, vol. 7, pp. 225-330, 1995.

[25] K. Von Frisch, "Decoding the language of the bee,"
Science, vol. 185, pp. 663-668, 1974.

[26] L. P. Wong, M. Y. H. Low, and C. S. Chong, "A bee
colony optimization algorithm for traveling salesman
problem," in Proceedings of the Second Asia
International Conference on Modeling & Simulation,
Kuala Lumpur, 2008, pp. 818-823.

[27] L. P. Wong, M. Y. H. Low, and C. S. Chong, "Bee
colony optimization with local search for traveling
salesman problem," in Proceedings of the 6th IEEE
International Conference on Industrial Informatics,
Daejeon, 2008, pp. 1019-1025.

[28] L. P. Wong, M. Y. H. Low, and C. S. Chong, "A bee
colony optimization algorithm with the fragmentation
state transition rule for traveling salesman problem," in

Accepted Article

Proceedings of the Conference on Innovative Production
Machines and Systems (IPROMS 2009), Cardiff, UK,
2009, pp. 399-404.

[29] S. S. Choong, L. P. Wong, M. Y. H. Low, and C. S.
Chong, "A bee colony optimisation algorithm with a
sequential-pattern-mining-based pruning strategy for the
travelling salesman problem," International Journal of
Bio-Inspired Computation, vol. 15, pp. 239-253, 2020.

[30] L. P. Wong and S. S. Choong, "A bee colony
optimization algorithm with frequent-closed-pattern-
based pruning strategy for traveling salesman problem,"
in 2015 Conference on Technologies and Applications of
Artificial Intelligence (TAAI), 2015, pp. 308-314.

[31] L. P. Wong, M. Y. H. Low, and C. S. Chong, "An
efficient bee colony optimization algorithm for traveling
salesman problem using frequency-based pruning," in
2009 7th IEEE International Conference on Industrial
Informatics, 2009, pp. 775-782.

[32] L. P. Wong, A. T. Khader, M. A. Al-Betar, and T. P. Tan,
"Solving Asymmetric Traveling Salesman Problems
using a generic Bee Colony Optimization framework
with insertion local search," in Proceedings of the 13th
International Conference on Intelligent Systems Design
and Applications (ISDA 2013), Bangi, 2013, pp. 20-27.

[33] L. P. Wong, M. Y. H. Low, and C. S. Chong, "Solving
job shop scheduling problems with a generic bee colony
optimization framework," in Proceedings or the
International Conrerence on Industrial Engineering and
Systems Management. International Institute for
Innovation, Industrial Engineering and
Entrepreneurship (I4e2), 2011, pp. 269-280.

[34] L.-P. Wong, C. Y. Puan, M. Y. H. Low, Y. W. Wong,
and C. S. Chong, "Bee colony optimisation algorithm
with big valley landscape exploitation for job shop
scheduling problems," International Journal of Bio-
Inspired Computation, vol. 2, pp. 85-99, 2010.

[35] M. H. Wun, L. P. Wong, A. T. Khader, and T. P. Tan, "A
bee colony optimization with automated parameter
tuning for sequential ordering problem," in Proceedings
of the Fourth World Congress on Information and
Communication Technologies (WICT 2014), Bandar
Hilir, 2014, pp. 314-319.

[36] J. Silc, K. Taškova, and P. Korošec, "Data mining-
assisted parameter tuning of a search algorithm,"
Informatica, vol. 39, pp. 169-176, 2015.

[37] O. Aoun, M. Sarhani, and A. El Afia, "Investigation of
hidden markov model for the tuning of metaheuristics in
airline scheduling problems," IFAC-PapersOnLine, vol.
49, pp. 347-352, 2016.

[38] I. Pereira, A. Madureira, P. B. de Moura Oliveira, and A.
Abraham, "Tuning Meta-Heuristics Using Multi-agent
Learning in a Scheduling System," in Transactions on
Computational Science XXI: Special Issue on
Innovations in Nature-Inspired Computing and
Applications, M. L. Gavrilova, C. J. K. Tan, and A.
Abraham, Eds., ed Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 190-210.

[39] S. Lessmann, M. Caserta, and I. Montalvo, "Tuning
metaheuristics: A data mining based approach for
particle swarm optimization," vol. 38, pp. 12826-12838,
2011.

[40] S. S. Choong, L. P. Wong, and C. P. Lim, "Automatic
design of hyper-heuristic based on reinforcement
learning," Information Sciences, vol. 436, pp. 89-107,
2018.

[41] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu,
"Automatic design of a hyper-heuristic framework with
gene expression programming for combinatorial
optimization problems," IEEE Transactions on
Evolutionary Computation, vol. 19, pp. 309-325, 2014.

[42] A. Liaw and M. Wiener, "Classification and regression
by randomForest," R news, vol. 2, pp. 18-22, 2002.

[43] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, and I. H. Witten, "The WEKA data mining
software: an update," ACM SIGKDD Explorations
Newsletter, vol. 11, pp. 10-18, 2009.

[44] G. Reinelt, "TSPLIB—A traveling salesman problem
library," ORSA journal on computing, vol. 3, pp. 376-
384, 1991.

[45] F. Wilcoxon, S. K. Katti, and R. A. Wilcox, "Critical
values and probability levels for the wilcoxon rank sum
test and the wilcoxon signed rank test," in Selected
Tables in Mathematical Statistics. vol. 1, H. L. Harter
and D. B. Owen, Eds., ed Providence: American
Mathematical Society, 1970, pp. 171-259.

[46] H. Cai, V. W. Zheng, and K. C. Chang, "A
Comprehensive Survey of Graph Embedding: Problems,
Techniques, and Applications," IEEE Transactions on
Knowledge and Data Engineering, vol. 30, pp. 1616-
1637, 2018.

[47] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction: MIT press, 2015.

[48] X. He, K. Zhao, and X. Chu, "AutoML: A Survey of the
State-of-the-Art," Knowledge-Based Systems, vol. 212,
p. 106622, 2021.

