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Abstract— Metaheuristics are a set of algorithms 

which is capable of solving Combinatorial Optimization 

Problems (COPs). When a metaheuristic is used to solve 

a COP, one of the major aspects is to determine an 

appropriate parameter setting. Poor practice of 

determining parameter values may lead to inability to 

find optimal solutions or getting invalid conclusions from 

the experimental results. This research proposes a 

machine-learning-based parameter control mechanism 

for a metaheuristic, i.e. the Bee Colony Optimization 

(BCO) algorithm. The proposed mechanism consists of 

three main phases: Data Collection, Model Training, and 

Deployment. In order to examine the performance of the 

BCO algorithm with the parameter control mechanism, a 

set of 16 TSP instances is used as test bed. The 

experimental results show that it is significantly better 

than the BCO implementation using the parameter values 

that are determined via a manual tuning process. The 

proposed parameter control mechanism overcomes the 

shortcomings of manual parameter tuning and 

dynamically adjust the parameter values throughout the 

BCO optimization process. 

Keywords—metaheuristic, parameter tuning, supervised 

learning, random forest regression, combinatorial 

optimization, swarm intelligence. 

I. INTRODUCTION 

A metaheuristic is a higher-level problem independent 
procedure or algorithm that is able to find a near optimal 
solution for Combinatorial Optimization Problem (COP). The 
solution found by a metaheuristic is often reasonably good, 
even when the metaheuristic operates with incomplete 
information or limited computational capacity. Metaheuristics 
can be classified as single-solution-based (e.g. Simulated 
Annealing (SA) [1, 2] and Tabu Search (TS) ) [3, 4], or 
population-based (e.g. Genetic Algorithm (GA) [5, 6], Ant 
Colony Optimization (ACO) [7, 8], Artificial Bee Colony 
(ABC) algorithm [9-12], and Bee Colony Optimization 
(BCO) [13-15]). Metaheuristics are commonly used to solve 
different COPs such as Traveling Salesman Problem (TSP), 
Job Shop Scheduling Problem (JSSP), Quadratic Assignment 
Problem (QAP), and Vehicle Routing Problem (VRP). 

The success of a metaheuristic in solving a COP highly 
depends on a balance between exploration and exploitation 
mechanisms during the search for solutions with acceptable 
quality. Metaheuristics owns a set of parameters needed to be 
tuned in order to strike a balance in terms of exploration versus 
exploitation. There are two common parameter setting 
methods in metaheuristics: parameter tuning and parameter 
control. Eiben and Smith [16] define parameter tuning as 
finding good parameter values before the execution of 
metaheuristic which are then kept fixed throughout an 
execution. On the other hand, parameter control dynamically 
changes parameter values in a metaheuristic based on instant 
feedbacks during the solution searching process. 
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Generally, when a metaheuristic is applied to solve a 
problem, the default parameter settings as recommended in 
the literature are utilized. As mentioned by Birattari and 
Kacprzyk [17], most researchers utilize a trial-and-error 
parameter tuning approach to determine the parameters of a 
metaheuristic. Besides trial-and-error approach, some 
scientific methods such as one factor at a time (OFAT) [18], 
F-Race [19] and design of experiment related methods [20-22] 
can also be utilized to tune the parameters. There are four 
major drawbacks accompanied with these parameter tuning 
approaches, i.e. time-consuming, labour intensive, high skill 
and knowledge requirements, and high risks to invalidate any 
result and conclusion drawn from the experiment. Very often, 
when the problem instance changes, parameters needed to be 
tuned from scratch again to better suit the new problem. In 
addition, these drawbacks of parameter tuning are especially 
apparent in design of experiment related approaches such as 
factorial design [13]. Assuming that each parameter is 
discretized and restricted to only m possible values, if there 
are n parameters, there will be mn combinations of parameter 
values needed to be tested. Therefore, parameter tuning itself 
can also be considered as a combinatorial optimization 
problem [23]. 

A population-based metaheuristic, namely: the Bee 
Colony Optimization (BCO) algorithm was proposed to solve 
various types of COPSs including TSP [13]. The BCO 
algorithm is inspired by the foraging behavior of bees. Similar 
to other metaheuristics, BCO also needs a suitable parameters 
configuration to yield good performance. This paper aims to 
address the limitations of the manual parameter tuning in 
BCO. Specifically, a Machine Learning (ML) based 
parameter control method which dynamically adapts to the 
feedbacks from solution instances during execution process is 
proposed as an alternative to the manual tuning method. 

The organization of the paper is as follows. Section I 
introduces the general ideas and the research problems as well 
as the research objectives. Section II introduces the TSP. 
Section III reviews the related literatures. Section IV 
illustrates and describes the mechanisms of the proposed ML-
based parameter control method for BCO [13]. Section V 
presents the experimental results and findings. Finally, 
Section VI ends the paper with conclusions drawn from 
experiment results and highlights the future work. 

II. TRAVELING SALESMAN PROBLEM 

As mentioned in Section I, this paper proposes a machine-
learning-based parameter control for the BCO algorithm. In 
order to validate the usefulness of the proposed parameter 
control mechanism, a combinatorial optimization problem, 
namely: TSP, is selected as the test bed. This section briefly 
describes TSP. 

TSP is an NP-hard COP [24].Suppose that a number of 
nodes are distributed in some geometric region,. TSP can be 
modelled as an undirected weighted graph, G = (E, V), in 
which E is a set of edges (E = {(a, b) : a, b ϵ V }) and V is a 
set of n nodes (V = {v1,v2, . . . ,vn}). When solving a TSP, a 
distance matrix corresponding to E, D = {da,b}, in which da,b 
represent the distance between city a and city b is given. Let 
∏ represents all feasible permutations of set V. An optimal 
TSP solution is a permutation π ϵ ∏, which has the shortest 
possible round trip distance, as shown in Eq. (1), 

𝐶𝑇𝑆𝑃(𝜋 ∈ ∏) = ∑ [𝑑𝜋(𝑖),𝜋(𝑖+1)] + 𝑑𝜋(𝑛),𝜋(1)
𝑛−1
𝑖=1  () 

where 𝜋(𝑖) ∈ 𝑉 indicates the i-th element in π. 

III. RELATED WORK 

This section presents studies related to the BCO algorithm 
and ML-based parameter control/tuning methods. They are 
described in Section III.A and Section III.B respectively. 

A. Bee Colony Optimization 

Bees are insects with well-organized interactive 
behaviour. In a bee colony, each bee is assigned with different 
tasks, including breeding, foraging, and building hive. In order 
to maintain a seamless food supply chain, foraging is a one of 
the very crucial tasks. In a bee colony, bees explore different 
spots looking for new food sources. When a bee discover a 
new food source, it performs waggle dance as an interactive 
medium to inform others about the amount of nectar, distance, 
and direction of the new food source [25]. As a result, a 
number of bees which observe the dance are attracted towards 
the newly discovered food source. A number of algorithms 
have been inspired by this foraging behaviour for solving a 
large variety of COPs. 

The initial BCO model [26] modelled the foraging 
behaviour of bees as its solution construction mechanism by 
conducting a stepwise state transition rule which comprises 
two components: heuristic distance and arc fitness. A bee 
begins its foraging process with probabilistically selecting a 
waggle dance as a preferred path. When the bee constructs a 
solution, the node which followed the choice of the preferred 
path is assigned with greater arc fitness and therefore it is more 
likely to be picked as the next node to be visited. On the other 
hand, nearer nodes from the current node is more likely to be 
chosen due to the impact of the heuristic distance component. 
In addition, the waggle dance duration is monitored using a 
linear function which consists of three parameters: individual 
profitability score of a bee, average profitability score of the 
bee colony, and the scaling factor [26]. 

This BCO algorithm is then enriched with a local search 
[27], a Fragmentation State Transition Rule (FSTR) [28], a 
fuzzy-based dance mechanism [15] and pruning strategies 
[29-31]. The developed BCO algorithm is a generic 
framework which is able to solve multiple COPs e.g. 
symmetric TSP [27, 29], asymmetric TSP [32], JSSP [14, 33, 
34], QAP [13], and sequential ordering problem [35]. The 
pseudocode of the BCO algorithm is shown in Algorithm I. 

ALGORITHM I. BEE COLONY OPTIMIZATION (BCO) ALGORITHM 

Procedure BCO 
initialization() 

while stop criteria are not fulfilled do 

 for all bees in a population do 
observeDance() 

constructSolutionByFSTR() 
performLocalSearch() 

performDance() 

 end while 

end while 

end Procedure BCO 

 
The BCO algorithm described in Algorithm I is equipped 

with a set of user defined parameters as follows. λ, α, and β 
are the three parameters defined in the bees’ path construction 
mechanism. K is a scaling parameter that controls the 
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magnitude of a dance duration. NBee denotes the number of 
bees (i.e. population size) being used in the BCO algorithm. ϖ 
denotes the capacity of past memory associated with each bee. 
The ML-based parameter control mechanism proposed in the 
paper focuses on the parameters defined in the bees’ path 
construction mechanism (i.e. λ and β). More details are 
presented in Section IV. 

B. ML-based Parameter Tuning/Control Methods 

There are a large variety of parameter tuning and control 
methods in the literature. In this section, some existing 
metaheuristic parameters tuning and control methods based on 
ML are highlighted. A summary is provided in Table I. 

TABLE I.  PREVIOUS WORK ON ML-BASED PARAMETER TUNING AND 

PARAMETER CONTROL FOR METAHEURISTICS 

Approaches ML model 

used 

Metaheuristic(s) 

Parameter 

Tuning 

Silc, et al. 

[36] 

Decision Tree Differential Ant-Stigmergy 

Algorithm (DASA) 

Aoun, et al. 

[37] 

Hidden Markov 

Model 

Particle Swarm Optimization 

(PSO) 

Pereira, et al. 

[38] 

Case-based 

Reasoning 

Tabu Search (TS), Genetic 

Algorithm (GA), Simulated 

Annealing (SA), Ant Colony 
Optimization (ACO), Particle 

Swarm Optimization (PSO) 

Parameter 

Control 

Lessmann, et 

al. [39] 

Non-linear 

Regression 

Particle Swarm Optimization 

(PSO) 

 
For parameter tuning, Silc, et al. [36] tested 5000 different 

parameter settings of the Differential Ant-Stigmergy 
Algorithm (DASA) and modelled the relationship between the 
parameter settings and performance using a decision tree. 
Aoun, et al. [37] utilized a Hidden Markov Model to evaluate 
the performance of each tested parameter configuration of 
Particle Swarm Optimization (PSO) over multiple test 
instances. Pereira, et al. [38] employed a case-based reasoning 
model. For a given new problem (case), the best metaheuristic 
and respective parameters that have been successfully used to 
solve similar cases are retrieved from the case base. 

Although parameter tuning approaches are able to 
determine a set of parameter setting for a metaheuristic, Eiben 
and Smith [16] suggest that there are no ‘one size fits all’ 
approach in setting parameter values because metaheuristics 
are comprised of dynamic and adaptive processes. Different 
stages of the optimization process require different balance of 
exploration and exploitation, and thus might need different 
choices of parameters to efficiently navigate through the 
search space [40, 41]. Therefore, relying only on parameter 
tuning strategy is insufficient for setting up the optimal search 
environment. In a recent work by Lessmann, et al. [39], an 
ML-based parameter control approach was proposed. 
Lessmann, et al. [39] suggested that the features of a solution 
instance are correlated to the parameter values and hence a 
number of models that fit the features of a solution instance to 
the parameter values are developed using several ML 
techniques, i.e. Support Vector Machine (SVM), Multiple 
Linear Regression (MLR), and Random Forest (RF). These 
techniques are evaluated using a water supply network 
planning problem which the decision variables are continuous 
in nature. The results conclude that non-linear relationship 
exists between features of solution instances and suitable 
parameter values. 

Inspired by Lessmann, et al. [39], in this paper, the use of 
a non-linear regression approach, namely Random Forest in 
controlling BCO parameters is investigated. There are two 
major differences as compared with Lessmann, et al. [39] as 
follows. First, in terms of the metaheuristic optimization 
algorithm, Lessmann et al. control the PSO parameters using 
a set of ML techniques whereas the proposed method is used 
to control the BCO parameters. Second, in terms of the 
optimization datasets used in performance evaluation, 
Lessmann et al. apply the parameter control mechanism on a 
set of continuous optimization problems (i.e. water supply 
network planning problem) whereas the proposed method is 
tested using a number of TSP benchmark instances which 
involve a discrete search space. The following section 
describes the proposed ML-based parameter control method 
for BCO. 

IV. PROPOSED WORK 

As mentioned in Section III.A, the bee foraging behaviour 
is modelled as the solution construction mechanism of the 
BCO algorithm [26]. Before a bee starts the solution 
construction process, it probabilistically select a dance 
performed by others to determine a preferred path, denoted as 
θ. θ denotes a tour that was previously explored by another 
bee. By referring to θ as guidance, the bees iteratively 
construct solutions by traveling from one city to another city 
according to a state transition probability, Pij,t, which 
represents the probability to travel from node i to node j at 
time t. Pij,t is a function consists of two elements, namely: 
heuristic distance dij, and arc fitness ρij,t of the connecting edge 
between the two cities, as shown in Eq. (2). 

𝑃𝑖𝑗,𝑡 =
[𝜌𝑖𝑗,𝑡]

𝛼
∙ [

1

𝑑𝑖𝑗
]

𝛽

∑ ([𝜌𝑖𝑗,𝑡]
𝛼
∙ [

1

𝑑𝑖𝑗
]

𝛽

)𝑗∈𝐴𝑖,𝑡

  () 

where Ai,t represents a set of cities which are yet to be selected 
at time t, α is a binary variable that turns on or off the influence 
of arc fitness, β controls the significance level of heuristic 
distance, and ρij,t is defined in Equation (3): 

𝜌𝑖𝑗,𝑡 =

{
 
 

 
  𝜆, 𝑗 ∈  𝐺𝑖,𝑡 , |𝐴𝑖,𝑡| > 1

1− 𝜆|𝐴𝑖,𝑡∩𝐺𝑖,𝑡|

|𝐴𝑖,𝑡−𝐺𝑖,𝑡|
, 𝑗 ∉  𝐺𝑖,𝑡, |𝐴𝑖,𝑡| > 1 

1, |𝐴𝑖,𝑡| > 1 }
 
 

 
 

∀𝑗𝜖𝐴𝑖,𝑡 , 0 ≤  𝜆 ≤  1 () 

Gi,t represents the city which the bee prefers to move from 
city i at time t as recommended by θ and λ is a parameter 
determining the likelihood of selecting the city recommended 
by θ. The first two conditions indicate that the edge 
recommended by θ (if there is one) is given a likelihood score 
of λ, while equal likelihood score is assigned to the remaining 
edges. Based on the third condition, when there is only one 
node left in Ai,t, its likelihood score is set to 1. 

This stepwise state transition rule allows bees to add one 
city in a given step until a complete TSP solution is 
constructed. This solution construction mechanism is a 
computationally expensive and it is not scalable when solving 
a TSP with large dimension. The stepwise state transition rule 
was modified in [28] such that it is less expensive in terms of 
computational time. In the modified solution construction 
mechanism, i.e. fragmentation state transition rule, a bee could 
add a batch/fragment of nodes in each step during the solution 
construction process, instead of adding only one node in each 
step. 
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ALGORITHM II. BEE COLONY OPTIMIZATION (BCO) ALGORITHM 

1 Procedure BCO-Control 
2 B = initialization() 

3 while iteration < BCMAX do  

4 for bi  B do 

5 θ = bi.observeDance() 

6 if iteration < interval  

7 λ, β = randomizeParam() 
8 else 

9 λ, β = model.predict(θ) 

10 end if 

11 bi.constructSolutionByFSTR(λ, β, θ) 

12 bi.performLocalSearch() 

13 if iteration ≠ 0 and Cost(bi’) < Cost(θ) 

14 D  (λ, β, θ)  

15 end if 

16 if iteration % 1000 == 0 
17 model = RF.train(D) 

18 D =  

19 end if 

20  bi.performWaggleDance() 
21 Conduct dance elitism 

22 Reset memory if stcuked in local optimum 

23 end for 
24 iteration++ 

25  end while 

26 end Procedure BCO-Control 

 
In this paper, it is aimed to control the parameters of the 

fragmentation state transition rule (i.e. λ and β) in the BCO 
algorithm. Algorithm II shows the pseudocode of BCO 
integrated with the proposed parameter control mechanism 
(denoted as BCO-Control). 

The proposed machine-learning-based parameter control 
method consists of three main phases: Data Collection, Model 
Training, and Deployment. During the Data Collection phase, 
the training data is collected during the execution of the BCO 
algorithm. In the initial period of the execution process, the 
two parameters λ and β are randomized and sampled within 
specified range: 0.0 ≤ λ ≤ 1.0 and 0.0 ≤ β ≤ 10.0  (Line 6-7 in 
Algorithm II). The purpose of employing randomized 
parameters is to sample various parameter values and identify 
good values with regards of different situations of the BCO 
algorithm execution process. When a suitable parameter 
setting for a situation is identified (e.g. a bee improves its 
preferred path with the parameter setting), the preferred path 
and its corresponding parameter values are appended to a set 
D, which is a training set for the subsequent Model Training 
phase (Line 13-15 in Algorithm II). The accumulated training 
data (i.e. set D) are periodically sent for regression model 
training to predict suitable parameter values. In this study, the 
Model Training is performed after every 1000 iterations (Line 
16-19 in Algorithm II). 

TABLE II.  A FEATURE REPRESENTATION EXAMPLE 

Solutions AB AC AD BC BD CD 

ACBDA 0 1 1 1 1 0 

ADCBA 1 0 1 1 0 1 

 
To ensure that the training time is affordable, the following 

pre-processing steps are performed to keep the size of the 
dataset (i.e. the number of columns and rows) in an acceptable 
range. Specifically, the top N (i.e. N = 25) most frequent edges 
presented in the collected dataset will be captured and used as 
Boolean features to represent bee solutions. When a solution 
contains/does not contain an edge, E, its value in the 
corresponding column representing E is set at one/zero. 

Consider a TSP with four cities, i.e. A, B, C, and D, Table II 
illustrates the feature representation of two solutions with N = 
6. The main purpose of using such feature extraction approach 
is to capture the edge information of a TSP solution while 
maintaining a reasonable number of columns. Moreover, a 
deduplication process over the rows is performed on the 
collected dataset. For every row with the same features, only 
the one with lowest parameter value will be kept for 
subsequent model training. The rationale of introducing a bias 
towards the lowest parameter values is the assumption of 
parameter setting that is able to improve the solution with least 
influence of the arc fitness and heuristic distance, is the most 
suitable parameter setting. 

In the proposed ML-based parameter control method, the 
Random Forest algorithm [42] is employed to model the 
relationship between the solution instance features and 
parameters. Random Forest is a decision-tree-based ensemble 
model. The pseudocode of the Random Forest algorithm is 
presented in Algorithm III [42]. In this study, the default 
parameter setting of Random Forest in Weka [43] is utilized. 

ALGORITHM III. RANDOM FOREST 

procedure randomForest 

 forest =  

 for i  1, …, ntree do 

 di = A bootstrap sample from the training dataset 

 treei = treeConstruction(di) 

 forest = forest  treei 

 end for 

 return forest 

end procedure 

 

procedure treeConstruction(d) 

 for each node in tree do 

 Split based on the best feature in a subset of all features 

 end for 

 return tree 

end procedure 

 

This ensemble model is chosen because a previous study 
[39] has proved that Random Forest is able to map the non-
linear relationships in the dataset for parameter control task. 
In the model training process, 70% of the dataset is employed 
for training, while 30% is utilized for validation. The model 
performance is validated using two main indicators: 
correlation coefficient which tells how many percent of the 
data variance is captured by the model, and root mean squared 
error which is the square root of total deviations between 
predicted values with the validation dataset. The set D is 
cleared after each Model Training phase. 

The Deployment phase follows the Model Training phase. 
In the Deployment phase, the values of λ and β used by each 
bee are guided by the predictions from the trained regression 
models (Line 9 in Algorithm II). Simultaneously, another 
cycle of Data Collection phase is started to collect new 
datasets for the subsequent Model Training phase. The BCO 
algorithm and its machine-learning-based parameter control 
mechanism repeat until either the algorithm has found the 
known optimal value or reached the predefined iteration limit. 
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V. EXPERIMENTAL RESULTS 

This section presents the empirical results of this study. It 
includes the experimental setup, result indicator and the 
experimental results. 

A. Experiment Setup 

In order to assess the effectiveness and performance of the 
machine-learning-based parameter control for the BCO 
algorithm, a total of 16 symmetric TSP instances are chosen 
from TSPLIB [44] with their dimension ranging from 136 to 
1291 cities. The dimension of the problem instance is reflected 
in the numerical figure of the instance name, e.g. PR136 is a 
136-city TSP; D1291 is a 1291-city TSP. 

The results were benchmarked against the work by Wong 
[13] (denoted as BCO-Fixed), which uses fixed parameter 
values determined by a manual tuning process. The parameter 
used by BCO-Fixed is as follows: α = 1, β = 1, λ = 0.1, NBee = 
50, and BCMax = 10000.  

B. Results Indicators 

NetBeans IDE version 8.2 and Weka 3.8.3 were used to 
implement the BCO algorithm and its machine-learning-based 
parameter control mechanism. Weka 3.8.3 supports all ML-
related functions, i.e. the Random Forest implementation. The 
experiments were conducted on a workstation running Ubuntu 
operating system with Intel CoreTM i7-3930K 3.20 GHz hexa-
core processor and 16 GB memory. 

There are two main indicators to evaluate the performance 
of BCO solving TSP problems: percentage deviation from 
optimum tour length δ (measured in %), and computational 
time to achieve the best tour length possible, T (measured in 
seconds). The formula for the calculation of δ is as shown in 
Eq. (4): 

𝛿 =  
µ𝑪 − 𝐶

∗

𝐶∗
∗ 100%  () 

C* is the known optimum for the problem instance, i.e. the 
shortest possible tour length found by the research community 
so far. Ten replications are conducted for the experiment. A 
set of results C = [c1, c2, …, c10] and T = [t1, t2, …, t10] are 
recorded, in which C is a set of generated shortest tour lengths 
while T is the time taken to achieve the corresponding shortest 
tour lengths. From the results, the average of set C and T are 
calculated and denoted as µC and µT respectively. The δavg 
indicator denotes the percentage difference of the best result 
from the known optimum on average. 

C. Experimental Results 

Table III shows the performance comparison between 
BCO-Fixed and BCO-Control. Table III reports the instance 
names, the known optimal tour length, average best tour 
length obtained by the algorithms (µC), deviation of µC from 
known optimum, and average time taken to obtain C (µT). 

Based on Table III, the average δavg scores for BCO-Fixed 
and BCO-Control are 0.437% and 0.363%, respectively. The 
largest δavg scores for BCO-Fixed and BCO-Control (i.e. 
0.964% and 0.862% respectively) are both obtained when 
solving the PCB1173 instance. 

BCO-fixed solves the 16 TSP instances to 0.437% from 
the known optimum within 1498.6 seconds (≈25 minutes). On 
the other hand, BCO-Control solves the instances to 0.363% 
from the known optimum within 1358.3 seconds (≈22.6 

minutes). In other words, BCO-Control averagely obtains 
16.9% better solutions with 9.4% (or 2.4 minutes) shorter 
computational time as compared with BCO-Fixed. 

TABLE III.  PERFORMANCE COMPARISON BETWEEN BCO-FIXED AND 

BCO-CONTROL ALGORITHMS BASED ON 16 TSP BENCHMARK PROBLEMS 

TSP 

Instances 

Known 

Optimum 
BCO-Fixed BCO-Control 

  µC δavg, % µT, 

seconds 

µC δavg, 

% 

µT, 

seconds 

PR136 96772 96857.2 0.088 92.8 96794.0 0.024 105.9 

LIN318 42029 42104.3 0.179 545.0 42081.4 0.125 714.8 

RD400 15281 15322.9 0.274 592.7 15313.9 0.215 780.5 

GR431 171414 172267.3 0.498 736.5 172207.4 0.463 619.5 

PR439 107217 107301.9 0.079 983.7 107285.3 0.064 729.7 

D493 35002 35188.2 0.532 1316.1 35171.0 0.483 1283.6 

ATT532 27686 27790.3 0.377 1412.0 27783.7 0.353 842.4 

ALI535 202339 202663.0 0.160 1339.3 202585.7 0.122 1032.2 
U574 36905 37167.4 0.711 1297.8 37091.0 0.504 1435.1 

D657 48912 49221.5 0.633 1529.5 49210.6 0.610 1083.3 

GR666 294358 296134 0.603 1679.3 295821.8 0.497 2017.8 

U724 41910 42212.7 0.722 1207.1 42177.7 0.639 2030.1 

SI1032 92650 92650.0 0.000 463.0 92650.0 0.000 622.7 

VM1084 239297 241027.1 0.723 3992.5 240526.5 0.514 2226.5 

PCB1173 56892 57440.3 0.964 3590.9 57382.6 0.862 3027.3 

D1291 50801 51026.1 0.443 3199.3 50969.6 0.332 3181.6 

Average:   0.437 1498.6  0.363 1358.3 

 
To compare the overall performance of BCO-Fixed and 

BCO-Control statistically, the Wilcoxon signed-rank test with 
a significance level of 0.05 is utilized. The µT values of all 
problem instances are scaled (i.e. all the values are between 
zero and one) such that the priorities of all instances are 
standardized. The differences between each pair of 
performance indicators (i.e. δavg and normalized μT) achieved 
by BCO-Fixed and BCO-Control are computed. After 
excluding those instances with zero differences, these 
differences are ranked in ascending order. In Table IV, N 
represents the effective sample size (i.e. number of TSP 
instances) after removing those with zero differences, R- 

represents a summation of the ranks for the TSP instances 
where BCO-Control underperforms BCO-Fixed, and R+ 
represents those for the TSP instances where BCO-Control are 
better than BCO-Fixed. A critical value, Wcri,N acquired from 
a statistical table is employed to compare with the test statistic, 
W [45]. W > WCri,N suggest that no statistical difference 
between the performance of BCO-Fixed and BCO-Control is 
observed, while W ≤ WCri,N implies a statistical difference 
between the performance of BCO-Fixed and BCO-Control. 
According to Table IV, BCO-Control has significantly better 
δavg scores as compared with BCO-Fixed (W ≤ WCri,N and R+ > 
R-). The zero R- value implies that BCO-Control performs 
better than BCO-Fixed in terms of δavg in solving all 16 TSP 
instances. In terms of µT, BCO-Control and BCO-Fixed are on 
par with each other (W > WCri,N). In other words, the proposed 
ML-based parameter control method achieves better solutions 
while maintains similar computational time.  

TABLE IV.  RESULTS OF THE WILCOXON SIGNED-RANK TEST 

 δavg 
Normalized 

µT 

N 15 16 

R+ 120 77 

R- 0 59 
W 0 59 

WCri,N 19 23 

Significant yes no 
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VI. CONCLUSIONS 

In this study, a machine-learning-based parameter control 
mechanism is integrated as part of the BCO algorithm (BCO-
Control). BCO-Control has been tested on a set of 16 TSP 
benchmark instances. The empirical results suggest that BCO-
Control has successfully controlled the two BCO parameters 
(i.e. λ and β) and guides the BCO algorithm to find better TSP 
tour length compared to the BCO-Fixed which uses 
parameters with fixed values. The results coincide with the 
findings by Lessmann, et al. [39] and proves that such 
machine-learning-based parameter control implementation is 
applicable to BCO for solving a discrete COP, i.e. TSP. The 
proposed machine-learning-based parameter control 
mechanism is able to address the drawbacks of manual 
parameter tuning and adapt different parameter values at 
different stages throughout the optimization process. 

For future work, application of similar approach to other 
metaheuristics can be investigated. As a TSP solution can be 
represented using a graph, the use of graph embedding [46] in 
the feature extraction process can be explored. Also, 
application of Reinforcement Learning [47] and AutoML [48] 
for parameter control in metaheuristic can be studied. 
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